Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 461, Pages 212–231 (Mi znsl6489)  

This article is cited in 1 scientific paper (total in 1 paper)

On an inverse dynamic problem for the wave equation with a potential on a real line

A. S. Mikhaylova, V. S. Mikhaylovb

a St. Petersburg Department of the Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia
b St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
Full-text PDF (220 kB) Citations (1)
References:
Abstract: We consider the inverse dynamic problem for the wave equation with a potential on a real line. The forward initial-boundary value problem is set up with a help of boundary triplets. As an inverse data we use an analog of a response operator (dynamic Dirichlet-to-Neumann map). We derive equations of inverse problem and also point out the relationship between dynamic inverse problem and spectral inverse problem from a matrix-valued measure.
Key words and phrases: inverse problem, Schrödinger operator, wave equation, Boundary Control method, boundary triplets.
Funding agency Grant number
Russian Science Foundation 17-11-01064
A. S. Mikhaylov and V. S. Mikhaylov were partly supported by RSF 17-11-01064.
Received: 08.10.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 5, Pages 701–714
DOI: https://doi.org/10.1007/s10958-019-04268-z
Document Type: Article
UDC: 517
Language: English
Citation: A. S. Mikhaylov, V. S. Mikhaylov, “On an inverse dynamic problem for the wave equation with a potential on a real line”, Mathematical problems in the theory of wave propagation. Part 47, Zap. Nauchn. Sem. POMI, 461, POMI, St. Petersburg, 2017, 212–231; J. Math. Sci. (N. Y.), 238:5 (2019), 701–714
Citation in format AMSBIB
\Bibitem{MikMik17}
\by A.~S.~Mikhaylov, V.~S.~Mikhaylov
\paper On an inverse dynamic problem for the wave equation with a~potential on a~real line
\inbook Mathematical problems in the theory of wave propagation. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 461
\pages 212--231
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6489}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 5
\pages 701--714
\crossref{https://doi.org/10.1007/s10958-019-04268-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl6489
  • https://www.mathnet.ru/eng/znsl/v461/p212
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :51
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024