Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 461, Pages 148–173 (Mi znsl6486)  

This article is cited in 3 scientific papers (total in 3 papers)

Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution

A. S. Kirpichnikova, N. Ya. Kirpichnikova

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (275 kB) Citations (3)
References:
Abstract: This paper continues the series of publications on the shortwave diffraction of the plane wave on the prolate bodies of revolution with axial symmetry in Neumann problem. The approach which is based on Leontovich–Fock parabolic equation method for the two parameter asymptotic expansion of the solution is briefly described. Two correction terms are found for the Fock's main integral term of the solution expansion in the boundary layer. This solution can be continuously transformed into the ray solution in the lit zone and decays exponentially in the shadow zone. If the observation point is in the shadow zone near the scatterer, then the wave field can be obtained with the help of residue theory for the integrals of the reflected field, because the incident field does not reach the shadow zone. The obtained residues are necessary for the unique construction of the creeping waves in the boundary layer of the scatterer in the shadow zone.
Key words and phrases: diffraction of short waves on elongated body of revolution, the Neumann problem, method of the Leontovich–Fock parabolic equation.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00529_A
Received: 19.11.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 5, Pages 658–675
DOI: https://doi.org/10.1007/s10958-019-04265-2
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. S. Kirpichnikova, N. Ya. Kirpichnikova, “Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution”, Mathematical problems in the theory of wave propagation. Part 47, Zap. Nauchn. Sem. POMI, 461, POMI, St. Petersburg, 2017, 148–173; J. Math. Sci. (N. Y.), 238:5 (2019), 658–675
Citation in format AMSBIB
\Bibitem{KirKir17}
\by A.~S.~Kirpichnikova, N.~Ya.~Kirpichnikova
\paper Leontovich--Fock parabolic equation method in the Neumann diffracion problem on a~prolate body of revolution
\inbook Mathematical problems in the theory of wave propagation. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 461
\pages 148--173
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6486}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 5
\pages 658--675
\crossref{https://doi.org/10.1007/s10958-019-04265-2}
Linking options:
  • https://www.mathnet.ru/eng/znsl6486
  • https://www.mathnet.ru/eng/znsl/v461/p148
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :63
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024