Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 461, Pages 140–147 (Mi znsl6485)  

The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times

N. A. Karazeeva

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: The system of equations, describing motion of fluids of Maxwell type is considered
$$ \frac\partial{\partial t}v+v\cdot\nabla v-\int_0^t K(t-\tau)\Delta v(x,\tau)\,d\tau+\nabla p=f(x,t),\quad\operatorname{div}v=0. $$
Here $K(t)$ is exponential series $K(t)=\sum_{s=1}^\infty\beta_se ^{-\alpha_st}$. The existence of weak solution for initial boundary value problem
$$ v(x,0)=v_0(x),\quad v\cdot n|_{\partial\Omega}=0,\quad\operatorname{rot}v|_{\partial\Omega}=0 $$
is proved.
Key words and phrases: nonnewtonian fluids, integro-differential equations.
Received: 30.10.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 5, Pages 652–657
DOI: https://doi.org/10.1007/s10958-019-04264-3
Document Type: Article
UDC: 517
Language: English
Citation: N. A. Karazeeva, “The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times”, Mathematical problems in the theory of wave propagation. Part 47, Zap. Nauchn. Sem. POMI, 461, POMI, St. Petersburg, 2017, 140–147; J. Math. Sci. (N. Y.), 238:5 (2019), 652–657
Citation in format AMSBIB
\Bibitem{Kar17}
\by N.~A.~Karazeeva
\paper The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times
\inbook Mathematical problems in the theory of wave propagation. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 461
\pages 140--147
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6485}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 5
\pages 652--657
\crossref{https://doi.org/10.1007/s10958-019-04264-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl6485
  • https://www.mathnet.ru/eng/znsl/v461/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :39
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024