|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 461, Pages 140–147
(Mi znsl6485)
|
|
|
|
The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times
N. A. Karazeeva St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
The system of equations, describing motion of fluids of Maxwell type is considered
$$
\frac\partial{\partial t}v+v\cdot\nabla v-\int_0^t K(t-\tau)\Delta v(x,\tau)\,d\tau+\nabla p=f(x,t),\quad\operatorname{div}v=0.
$$
Here $K(t)$ is exponential series $K(t)=\sum_{s=1}^\infty\beta_se ^{-\alpha_st}$. The existence of weak solution for initial boundary value problem
$$
v(x,0)=v_0(x),\quad v\cdot n|_{\partial\Omega}=0,\quad\operatorname{rot}v|_{\partial\Omega}=0
$$
is proved.
Key words and phrases:
nonnewtonian fluids, integro-differential equations.
Received: 30.10.2017
Citation:
N. A. Karazeeva, “The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times”, Mathematical problems in the theory of wave propagation. Part 47, Zap. Nauchn. Sem. POMI, 461, POMI, St. Petersburg, 2017, 140–147; J. Math. Sci. (N. Y.), 238:5 (2019), 652–657
Linking options:
https://www.mathnet.ru/eng/znsl6485 https://www.mathnet.ru/eng/znsl/v461/p140
|
Statistics & downloads: |
Abstract page: | 92 | Full-text PDF : | 37 | References: | 25 |
|