Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 461, Pages 124–139 (Mi znsl6484)  

This article is cited in 1 scientific paper (total in 1 paper)

Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in a two-dimensional symmetric quantum waveguide of variable cross-section

M. M. Kabardova, B. A. Plamenevskiyb, O. V. Sarafanovb, N. M. Sharkovab

a St. Petersburg State University of Telecommunications, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (464 kB) Citations (1)
References:
Abstract: The waveguide coincides with a strip having two narrows of width $\varepsilon$. An electron wave function satisfies the Dirichlet boundary value problem for the Helmholtz equation. The part of the waveguide between the narrows serves as a resonator and conditions for the electron resonant tunneling can occur. In the paper, asymptotic formulas as $\varepsilon\to0$ for characteristics of the resonant tunneling are used. The asymptotic results are compared with numerical ones obtained with approximate calculation of the scattering matrix for energies in the interval between the second and the third thresholds. The comparison allows to state an interval of $\varepsilon$, where the asymptotic and numerical approaches agree. The suggested methods can be applied to more complicated models than one considered in the paper. In particular, the same approach can be used for asymptotic and numerical analysis of the tunneling in three-dimensional quantum waveguides of variable cross-section.
Key words and phrases: quantum waveguide, variable cross-section, Helmholtz equation, resonant tunneling, comparison of asymptotics and numerics.
Funding agency Grant number
Russian Science Foundation 17-11-01126
Received: 27.10.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 5, Pages 641–651
DOI: https://doi.org/10.1007/s10958-019-04263-4
Document Type: Article
UDC: 517
Language: Russian
Citation: M. M. Kabardov, B. A. Plamenevskiy, O. V. Sarafanov, N. M. Sharkova, “Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in a two-dimensional symmetric quantum waveguide of variable cross-section”, Mathematical problems in the theory of wave propagation. Part 47, Zap. Nauchn. Sem. POMI, 461, POMI, St. Petersburg, 2017, 124–139; J. Math. Sci. (N. Y.), 238:5 (2019), 641–651
Citation in format AMSBIB
\Bibitem{KabPlaSar17}
\by M.~M.~Kabardov, B.~A.~Plamenevskiy, O.~V.~Sarafanov, N.~M.~Sharkova
\paper Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in a~two-dimensional symmetric quantum waveguide of variable cross-section
\inbook Mathematical problems in the theory of wave propagation. Part~47
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 461
\pages 124--139
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6484}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 5
\pages 641--651
\crossref{https://doi.org/10.1007/s10958-019-04263-4}
Linking options:
  • https://www.mathnet.ru/eng/znsl6484
  • https://www.mathnet.ru/eng/znsl/v461/p124
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :37
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024