Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 460, Pages 190–202 (Mi znsl6477)  

This article is cited in 3 scientific papers (total in 3 papers)

The existence of root subgroup translated by a given element into its opposite

I. M. Pevzner

Herzen State Pedagogical University of Russia, St. Petersburg, Russia
Full-text PDF (211 kB) Citations (3)
References:
Abstract: Let $\Phi$ be a simply-laced root system, $K$ an algebraically closed field, $G=G_\mathrm{ad}(\Phi,K)$ the adjoint group of type $\Phi$ over $K$. Then for every non-trivial element $g\in G$ there exists a root element $x$ of the Lie algebra of $G$ such that $x$ and $gx$ are opposite.
Key words and phrases: Сhevalley groups, root elements.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00820-а
Received: 13.10.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 240, Issue 4, Pages 494–502
DOI: https://doi.org/10.1007/s10958-019-04366-y
Document Type: Article
UDC: 512.5
Language: Russian
Citation: I. M. Pevzner, “The existence of root subgroup translated by a given element into its opposite”, Problems in the theory of representations of algebras and groups. Part 32, Zap. Nauchn. Sem. POMI, 460, POMI, St. Petersburg, 2017, 190–202; J. Math. Sci. (N. Y.), 240:4 (2019), 494–502
Citation in format AMSBIB
\Bibitem{Pev17}
\by I.~M.~Pevzner
\paper The existence of root subgroup translated by a~given element into its opposite
\inbook Problems in the theory of representations of algebras and groups. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 460
\pages 190--202
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6477}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 240
\issue 4
\pages 494--502
\crossref{https://doi.org/10.1007/s10958-019-04366-y}
Linking options:
  • https://www.mathnet.ru/eng/znsl6477
  • https://www.mathnet.ru/eng/znsl/v460/p190
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :49
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024