Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 459, Pages 37–57 (Mi znsl6463)  

$LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$

J. Burczakab, G. Seregincd

a Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland
b Mathematical Institute, University of Oxford, UK
c Oxford University, UK
d St. Petersburg Department of Steklov Mathematical Institute, RAS, Russia
References:
Abstract: For any weak solution of the Stokes system with drifts in $L_\infty (BMO^{-1})$, we prove a reverse Hölder inequality and $LlogL$-higher integrability of the velocity gradients.
Key words and phrases: Stokes system with drift, reverse Hölder inequality, higher integrability.
Funding agency Grant number
MNiSW 1289/MOB/IV/2015/0
Russian Foundation for Basic Research 17-01-00099-a
Russian Academy of Sciences - Federal Agency for Scientific Organizations PRAS-18-01
J. Burczak was supported by MNiSW "Mobilność Plus" grant 1289/MOB/IV/2015/0. G. Seregin was supported in parts by the grant RFBR 17-01-00099-a and by the Program of the Presidium of the Russian Academy of Sciences No. 1 “Fundamental Mathematics and its Applications” under grant PRAS-18-01.
Received: 18.07.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 236, Issue 4, Pages 399–412
DOI: https://doi.org/10.1007/s10958-018-4120-6
Document Type: Article
UDC: 517
Language: English
Citation: J. Burczak, G. Seregin, “$LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$”, Boundary-value problems of mathematical physics and related problems of function theory. Part 46, Zap. Nauchn. Sem. POMI, 459, POMI, St. Petersburg, 2017, 37–57; J. Math. Sci. (N. Y.), 236:4 (2019), 399–412
Citation in format AMSBIB
\Bibitem{BurSer17}
\by J.~Burczak, G.~Seregin
\paper $LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 459
\pages 37--57
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6463}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 236
\issue 4
\pages 399--412
\crossref{https://doi.org/10.1007/s10958-018-4120-6}
Linking options:
  • https://www.mathnet.ru/eng/znsl6463
  • https://www.mathnet.ru/eng/znsl/v459/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :78
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024