Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 458, Pages 236–246 (Mi znsl6460)  

Lattice points in the four-dimensional ball

O. M. Fomenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $r_4(n)$ denote the number of representations of $n$ as a sum of $4$ squares. The generating function $\zeta_4(s)$ is Epstein's zeta function. We consider the Riesz mean
$$ D_\rho(x;\zeta_4)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_4(n) $$
for any fixed $\rho>0$ and define the error term $\Delta_4(x;\zeta_4)$ by
$$ D_\rho(x;\zeta_4)=\frac{\pi^2x^{2+\rho}}{\Gamma(\rho+3)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_4(0)+\Delta_\rho(x;\zeta_4). $$
In § 2 one proves that
$$ \Delta_4(x;\zeta_4)= \begin{cases} O(x^{1/2+\rho+\epsilon})&(1<\rho\leq3/2),\\ O(x^{9/8+\rho/4})&(1/2<\rho\leq1),\\ O(x^{5/4+\epsilon})&(0<\rho\leq1/2). \end{cases} $$
In § 3 one proves that
$$ \Delta_{1/2}(x;\zeta_4)=\Omega(x\log^{1/2}x). $$
Received: 29.09.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 234, Issue 5, Pages 750–757
DOI: https://doi.org/10.1007/s10958-018-4040-5
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “Lattice points in the four-dimensional ball”, Analytical theory of numbers and theory of functions. Part 33, Zap. Nauchn. Sem. POMI, 458, POMI, St. Petersburg, 2017, 236–246; J. Math. Sci. (N. Y.), 234:5 (2018), 750–757
Citation in format AMSBIB
\Bibitem{Fom17}
\by O.~M.~Fomenko
\paper Lattice points in the four-dimensional ball
\inbook Analytical theory of numbers and theory of functions. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 458
\pages 236--246
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6460}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 5
\pages 750--757
\crossref{https://doi.org/10.1007/s10958-018-4040-5}
Linking options:
  • https://www.mathnet.ru/eng/znsl6460
  • https://www.mathnet.ru/eng/znsl/v458/p236
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :45
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024