|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 458, Pages 236–246
(Mi znsl6460)
|
|
|
|
Lattice points in the four-dimensional ball
O. M. Fomenko St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $r_4(n)$ denote the number of representations of $n$ as a sum of $4$ squares. The generating function $\zeta_4(s)$ is Epstein's zeta function. We consider the Riesz mean
$$
D_\rho(x;\zeta_4)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_4(n)
$$
for any fixed $\rho>0$ and define the error term $\Delta_4(x;\zeta_4)$ by
$$
D_\rho(x;\zeta_4)=\frac{\pi^2x^{2+\rho}}{\Gamma(\rho+3)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_4(0)+\Delta_\rho(x;\zeta_4).
$$
In § 2 one proves that
$$
\Delta_4(x;\zeta_4)=
\begin{cases}
O(x^{1/2+\rho+\epsilon})&(1<\rho\leq3/2),\\
O(x^{9/8+\rho/4})&(1/2<\rho\leq1),\\
O(x^{5/4+\epsilon})&(0<\rho\leq1/2).
\end{cases}
$$
In § 3 one proves that
$$
\Delta_{1/2}(x;\zeta_4)=\Omega(x\log^{1/2}x).
$$
Received: 29.09.2017
Citation:
O. M. Fomenko, “Lattice points in the four-dimensional ball”, Analytical theory of numbers and theory of functions. Part 33, Zap. Nauchn. Sem. POMI, 458, POMI, St. Petersburg, 2017, 236–246; J. Math. Sci. (N. Y.), 234:5 (2018), 750–757
Linking options:
https://www.mathnet.ru/eng/znsl6460 https://www.mathnet.ru/eng/znsl/v458/p236
|
Statistics & downloads: |
Abstract page: | 160 | Full-text PDF : | 45 | References: | 34 |
|