Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 458, Pages 218–235 (Mi znsl6459)  

This article is cited in 1 scientific paper (total in 1 paper)

On Riesz means of the coefficients of Epstein's zeta functions

O. M. Fomenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (238 kB) Citations (1)
References:
Abstract: Let $r_k(n)$ denote the number of lattice points on a $k$-dimensional sphere of radius $\sqrt n$.The generating function
$$ \zeta_k(s)=\sum^\infty_{n=1}r_k(n)n^{-s},\ k\geq2, $$
is Epstein's zeta-function. Let $k=3$. We consider the Riesz mean of the type
$$ D_\rho(x;\zeta_3)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_3(n) $$
for any fixed $\rho>0$ and define the error term $\Delta_\rho(x;\zeta_3)$ by
$$ D_\rho(x;\zeta_3)=\frac{\pi^{3/2}x^{\rho+3/2}}{\Gamma(\rho+5/2)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_3(0)+\Delta_\rho(x;\zeta_3). $$
A result of K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) gives
$$ \Delta_\rho(x;\zeta_3)= \begin{cases} O(x^{1/2+\rho/2)}&(\rho>1),\\ \Omega_\pm(x^{1/2+\rho/2})&(\rho\geq0). \end{cases} $$
In § 2 one proves that
$$ \Delta_\rho(x;\zeta_3)= \begin{cases} O(x\log x)&(\rho=1),\\ O(x^{2/3+\rho/3+\epsilon})&(1/2<\rho<1),\\ O(x^{3/4+\rho/4+\epsilon})&(0<\rho\leq1/2). \end{cases} $$
In § 3 one mentions a few examples for which results of § 2 are applicable.
In § 4 one investigates Riesz means of the coefficients of $\zeta_k(s)$, $k\geq4$.
Received: 29.09.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 234, Issue 5, Pages 737–749
DOI: https://doi.org/10.1007/s10958-018-4039-y
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “On Riesz means of the coefficients of Epstein's zeta functions”, Analytical theory of numbers and theory of functions. Part 33, Zap. Nauchn. Sem. POMI, 458, POMI, St. Petersburg, 2017, 218–235; J. Math. Sci. (N. Y.), 234:5 (2018), 737–749
Citation in format AMSBIB
\Bibitem{Fom17}
\by O.~M.~Fomenko
\paper On Riesz means of the coefficients of Epstein's zeta functions
\inbook Analytical theory of numbers and theory of functions. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 458
\pages 218--235
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6459}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 5
\pages 737--749
\crossref{https://doi.org/10.1007/s10958-018-4039-y}
Linking options:
  • https://www.mathnet.ru/eng/znsl6459
  • https://www.mathnet.ru/eng/znsl/v458/p218
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :41
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024