Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 458, Pages 159–163 (Mi znsl6457)  

On cubic exponential sums and Gauss sums

N. V. Proskurin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $e_q$ be a nontrivial additive character of a finite field $\mathbb F_q$ of order $q\equiv1\pmod3$, and let $\psi$ be a cubic multiplicative character of $\mathbb F_q$, $\psi(0)=0$. Consider the cubic Gauss sum and the cubic exponential sum
\begin{equation*} G(\psi)=\sum_{z\in\mathbb F_q}e_q(z)\psi(z),\quad C(w)=\sum_{z\in\mathbb F_q}e_q\Bigl(\frac{z^3}w-3z\Bigr),\quad w\in\mathbb F_q\quad w\neq0. \end{equation*}
For all nonzero $a,b\in\mathbb F_q$, $ab\neq0$, it is proved that
\begin{equation*} \frac1q\sum_nC(an)C(bn)\psi(n)+\frac1q\psi(ab)G(\psi)^2=\bar\psi(ab)\psi(a-b)\overline{G(\psi)}, \end{equation*}
where summation runs over all nonzero $n\in\mathbb F_q$.
Key words and phrases: Gauss sum, finite field, cubic exponential sum.
Received: 13.09.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 234, Issue 5, Pages 697–700
DOI: https://doi.org/10.1007/s10958-018-4037-0
Document Type: Article
UDC: 511.321
Language: Russian
Citation: N. V. Proskurin, “On cubic exponential sums and Gauss sums”, Analytical theory of numbers and theory of functions. Part 33, Zap. Nauchn. Sem. POMI, 458, POMI, St. Petersburg, 2017, 159–163; J. Math. Sci. (N. Y.), 234:5 (2018), 697–700
Citation in format AMSBIB
\Bibitem{Pro17}
\by N.~V.~Proskurin
\paper On cubic exponential sums and Gauss sums
\inbook Analytical theory of numbers and theory of functions. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 458
\pages 159--163
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6457}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 5
\pages 697--700
\crossref{https://doi.org/10.1007/s10958-018-4037-0}
Linking options:
  • https://www.mathnet.ru/eng/znsl6457
  • https://www.mathnet.ru/eng/znsl/v458/p159
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :50
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024