|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 458, Pages 159–163
(Mi znsl6457)
|
|
|
|
On cubic exponential sums and Gauss sums
N. V. Proskurin St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $e_q$ be a nontrivial additive character of a finite field $\mathbb F_q$ of order $q\equiv1\pmod3$, and let $\psi$ be a cubic multiplicative character of $\mathbb F_q$, $\psi(0)=0$. Consider the cubic Gauss sum and the cubic exponential sum
\begin{equation*}
G(\psi)=\sum_{z\in\mathbb F_q}e_q(z)\psi(z),\quad C(w)=\sum_{z\in\mathbb F_q}e_q\Bigl(\frac{z^3}w-3z\Bigr),\quad w\in\mathbb F_q\quad w\neq0.
\end{equation*}
For all nonzero $a,b\in\mathbb F_q$, $ab\neq0$, it is proved that
\begin{equation*}
\frac1q\sum_nC(an)C(bn)\psi(n)+\frac1q\psi(ab)G(\psi)^2=\bar\psi(ab)\psi(a-b)\overline{G(\psi)},
\end{equation*}
where summation runs over all nonzero $n\in\mathbb F_q$.
Key words and phrases:
Gauss sum, finite field, cubic exponential sum.
Received: 13.09.2017
Citation:
N. V. Proskurin, “On cubic exponential sums and Gauss sums”, Analytical theory of numbers and theory of functions. Part 33, Zap. Nauchn. Sem. POMI, 458, POMI, St. Petersburg, 2017, 159–163; J. Math. Sci. (N. Y.), 234:5 (2018), 697–700
Linking options:
https://www.mathnet.ru/eng/znsl6457 https://www.mathnet.ru/eng/znsl/v458/p159
|
Statistics & downloads: |
Abstract page: | 159 | Full-text PDF : | 50 | References: | 33 |
|