Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 457, Pages 286–316 (Mi znsl6447)  

This article is cited in 3 scientific papers (total in 3 papers)

Gaussian convex bodies: a non-asymptotic approach

G. Paourisa, P. Pivovarovb, P. Valettasb

a Department of Mathematics, Mailstop 3368, Texas A&M University, College Station TX 77843-3368 USA
b Mathematics Department, University of Missouri, Columbia, MO 65211 USA
Full-text PDF (326 kB) Citations (3)
References:
Abstract: We study linear images of a symmetric convex body $C\subseteq\mathbb R^N$ under an $n\times N$ Gaussian random matrix $G$, where $N\ge n$. Special cases include common models of Gaussian random polytopes and zonotopes. We focus on the intrinsic volumes of $GC$ and study the expectation, variance, small and large deviations from the mean, small ball probabilities, and higher moments. We discuss how the geometry of $C$, quantified through several different global parameters, affects such concentration properties. When $n=1$, $G$ is simply a $1\times N$ row vector and our analysis reduces to Gaussian concentration for norms. For matrices of higher rank and for natural families of convex bodies $C_N\subseteq\mathbb R^N$, with $N\to\infty$, we obtain new asymptotic results and take first steps to compare with the asymptotic theory.
Key words and phrases: intrinsic volumes, Gaussian matrices, deviation inequalities, higher moments.
Funding agency Grant number
National Science Foundation CAREER-1151711
DMS-1612936
DMS-1440140
G. P. is supported by the NSF CAREER-1151711 grant; P. P. and P. V. are supported by the NSF grant DMS-1612936. The paper was completed while the authors were in residence at the Mathematical Sciences Research Institute (MSRI) in Berkeley, California, supported by NSF grant DMS-1440140. The hospitality of MSRI and of the organizers of the program on Geometric Functional Analysis and Applications is gratefully acknowledged.
Received: 12.09.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 4, Pages 537–559
DOI: https://doi.org/10.1007/s10958-019-04256-3
Document Type: Article
UDC: 519.2
Language: English
Citation: G. Paouris, P. Pivovarov, P. Valettas, “Gaussian convex bodies: a non-asymptotic approach”, Probability and statistics. Part 25, Zap. Nauchn. Sem. POMI, 457, POMI, St. Petersburg, 2017, 286–316; J. Math. Sci. (N. Y.), 238:4 (2019), 537–559
Citation in format AMSBIB
\Bibitem{PaoPivVal17}
\by G.~Paouris, P.~Pivovarov, P.~Valettas
\paper Gaussian convex bodies: a~non-asymptotic approach
\inbook Probability and statistics. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 457
\pages 286--316
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6447}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 4
\pages 537--559
\crossref{https://doi.org/10.1007/s10958-019-04256-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl6447
  • https://www.mathnet.ru/eng/znsl/v457/p286
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :72
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024