Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 457, Pages 276–285 (Mi znsl6446)  

This article is cited in 2 scientific papers (total in 2 papers)

A sharp rate of convergence for the empirical spectral measure of a random unitary matrix

E. S. Meckes, M. W. Meckes

Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, U.S.A.
Full-text PDF (173 kB) Citations (2)
References:
Abstract: We consider the convergence of the empirical spectral measures of random $N\times N$ unitary matrices. We give upper and lower bounds showing that the Kolmogorov distance between the spectral measure and the uniform measure on the unit circle is of the order $\log N/N$, both in expectation and almost surely. This implies in particular that the convergence happens more slowly for Kolmogorov distance than for the $L_1$-Kantorovich distance. The proof relies on the determinantal structure of the eigenvalue process.
Key words and phrases: random matrices, empirical spectral measures, determinantal point processes.
Received: 04.08.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 4, Pages 530–536
DOI: https://doi.org/10.1007/s10958-019-04255-4
Document Type: Article
UDC: 519.2
Language: English
Citation: E. S. Meckes, M. W. Meckes, “A sharp rate of convergence for the empirical spectral measure of a random unitary matrix”, Probability and statistics. Part 25, Zap. Nauchn. Sem. POMI, 457, POMI, St. Petersburg, 2017, 276–285; J. Math. Sci. (N. Y.), 238:4 (2019), 530–536
Citation in format AMSBIB
\Bibitem{MecMec17}
\by E.~S.~Meckes, M.~W.~Meckes
\paper A sharp rate of convergence for the empirical spectral measure of a random unitary matrix
\inbook Probability and statistics. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 457
\pages 276--285
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6446}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 4
\pages 530--536
\crossref{https://doi.org/10.1007/s10958-019-04255-4}
Linking options:
  • https://www.mathnet.ru/eng/znsl6446
  • https://www.mathnet.ru/eng/znsl/v457/p276
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :39
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024