Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 457, Pages 114–167 (Mi znsl6440)  

This article is cited in 1 scientific paper (total in 1 paper)

An optimal transport approach for the kinetic Bohmian equation

W. Gangboa, J. Haskovecb, P. Markowichb, J. Sierrab

a University of California at Los Angeles, Los Angeles, CA 90095, U.S.A.
b CEMSE Division, King Abdullah University of Science and Technology, Saudi Arabia
Full-text PDF (407 kB) Citations (1)
References:
Abstract: We study the existence theory of solutions of the kinetic Bohmian equation, a nonlinear Vlasov-type equation proposed for the phase-space formulation of Bohmian mechanics. Our main idea is to interpret the kinetic Bohmian equation as a Hamiltonian system defined on an appropriate Poisson manifold built on a Wasserstein space. We start by presenting an existence theory for stationary solutions of the kinetic Bohmian equation. Afterwards, we develop an approximative version of our Hamiltonian system in order to study its associated flow. We then prove existence of solutions of our approximative version. Finally, we present some convergence results for the approximative system, the aim being to establish that, in the limit, the approximative solution satisfies the kinetic Bohmian equation in a weak sense.
Key words and phrases: Kinetic equation, Hamiltonian flow, Wasserstein space, Poisson structure, Moreau–Yosida approximation.
Funding agency Grant number
National Science Foundation DMS-1160939
The research of W. Gangbo was supported by NSF grant DMS–1160939.
Received: 06.03.2017
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 238, Issue 4, Pages 415–452
DOI: https://doi.org/10.1007/s10958-019-04248-3
Document Type: Article
UDC: 519.2
Language: English
Citation: W. Gangbo, J. Haskovec, P. Markowich, J. Sierra, “An optimal transport approach for the kinetic Bohmian equation”, Probability and statistics. Part 25, Zap. Nauchn. Sem. POMI, 457, POMI, St. Petersburg, 2017, 114–167; J. Math. Sci. (N. Y.), 238:4 (2019), 415–452
Citation in format AMSBIB
\Bibitem{GanHasMar17}
\by W.~Gangbo, J.~Haskovec, P.~Markowich, J.~Sierra
\paper An optimal transport approach for the kinetic Bohmian equation
\inbook Probability and statistics. Part~25
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 457
\pages 114--167
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6440}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2019
\vol 238
\issue 4
\pages 415--452
\crossref{https://doi.org/10.1007/s10958-019-04248-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl6440
  • https://www.mathnet.ru/eng/znsl/v457/p114
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :48
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024