|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 457, Pages 12–36
(Mi znsl6435)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Large deviations for level sets of branching Brownian motion and Gaussian free fields
E. Aїdékona, Yueyun Hub, Zhan Shia a LPMA, Université Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cedex 05, France
b LAGA, Université Paris XIII, 99 avenue J-B Clément, F-93430 Villetaneuse, France
Abstract:
We study deviation probabilities for the number of high positioned particles in branching Brownian motion, and confirm a conjecture of Derrida and Shi [10]. We also solve the corresponding problem for the two-dimensional discrete Gaussian free field. Our method relies on an elementary inequality for inhomogeneous Galton–Watson processes.
Key words and phrases:
branching Brownian motion, Gaussian free field, large deviation.
Received: 11.09.2017
Citation:
E. Aïdékon, Yueyun Hu, Zhan Shi, “Large deviations for level sets of branching Brownian motion and Gaussian free fields”, Probability and statistics. Part 25, Zap. Nauchn. Sem. POMI, 457, POMI, St. Petersburg, 2017, 12–36; J. Math. Sci. (N. Y.), 238:4 (2019), 348–365
Linking options:
https://www.mathnet.ru/eng/znsl6435 https://www.mathnet.ru/eng/znsl/v457/p12
|
Statistics & downloads: |
Abstract page: | 248 | Full-text PDF : | 40 | References: | 25 |
|