|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 456, Pages 172–176
(Mi znsl6431)
|
|
|
|
Smoothness of a holomorphic function and its modulus on the boundary of a polydisk
N. A. Shirokovabc a St. Petersburg State University, St. Petersburg, Russia
b National Research University "Higher School of Economics", St. Petersburg Branch, St. Petersburg, Russia
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
We prove that if a function $f$ is holomorphic in the polydisk $\mathbb D^n$, $n\ge2$, $f$ is continuous in $\overline{\mathbb D^n}$, $f(z)\ne0$, $z\in\mathbb D^n$, and $|f|$ belongs to the $\alpha$-Hölder class, $0<\alpha<1$, on the boundary of $\mathbb D^n$ then $f$ belongs to the $(\frac\alpha2-\varepsilon)$-Hölder class on $\overline{\mathbb D^n}$ for any $\varepsilon>0$.
Key words and phrases:
holomorphic functions, Hölder classes, polydisk.
Received: 04.05.2017
Citation:
N. A. Shirokov, “Smoothness of a holomorphic function and its modulus on the boundary of a polydisk”, Investigations on linear operators and function theory. Part 45, Zap. Nauchn. Sem. POMI, 456, POMI, St. Petersburg, 2017, 172–176; J. Math. Sci. (N. Y.), 234:3 (2018), 381–383
Linking options:
https://www.mathnet.ru/eng/znsl6431 https://www.mathnet.ru/eng/znsl/v456/p172
|
Statistics & downloads: |
Abstract page: | 211 | Full-text PDF : | 51 | References: | 32 |
|