|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 456, Pages 135–143
(Mi znsl6427)
|
|
|
|
Unconditional convergence for wavelet frame extensions
E. A. Lebedevaab a St. Petersburg State University, St. Petersburg, Russia
b Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
Abstract:
Let $\{\psi_{j,k}\}_{(j,k)\in\mathbb Z^2}$, $\{\widetilde\psi_{j,k}\}_{(j,k)\in\mathbb Z^2}$ be dual wavelet frames in $L_2(\mathbb R)$, let $\eta$ be an even, bounded, decreasing on $[0,\infty)$ function such that
$$
\int_0^\infty\eta(x)\ln(1+x)\,dx<\infty,
$$
and $|\psi(x)|,|\widetilde\psi(x)|\le\eta(x)$. Then the series $\sum_{j,k\in\mathbb Z}(f,\widetilde\psi_{j,k})\psi_{j,k}$ converges unconditionally in $L_p(\mathbb R)$, $1<p<\infty$.
Key words and phrases:
wavelet frames, unconditional convergence, wavelets.
Received: 03.05.2017
Citation:
E. A. Lebedeva, “Unconditional convergence for wavelet frame extensions”, Investigations on linear operators and function theory. Part 45, Zap. Nauchn. Sem. POMI, 456, POMI, St. Petersburg, 2017, 135–143; J. Math. Sci. (N. Y.), 234:3 (2018), 357–361
Linking options:
https://www.mathnet.ru/eng/znsl6427 https://www.mathnet.ru/eng/znsl/v456/p135
|
Statistics & downloads: |
Abstract page: | 205 | Full-text PDF : | 57 | References: | 35 |
|