Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 456, Pages 55–76 (Mi znsl6421)  

Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity

O. L. Vinogradov, A. V. Gladkaya

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: Suppose that $\sigma>0$, $r,\mu\in\mathbb N$, $\mu\geqslant r+1$, $r$ is odd, $p\in[1,+\infty]$, $f\in W^{(r)}_p(\mathbb R)$. We construct linear operators $\mathcal X_{\sigma,r,\mu}$ whose values are splines of degree $\mu$ and of minimal defect with knots $\frac{k\pi}\sigma$ ($k\in\mathbb Z$) such that
\begin{gather*} \|f-\mathcal X_{\sigma,r,\mu}(f)\|_p\\ \leqslant\left(\frac\pi\sigma\right)^r\left\{\frac{A_{r,0}}2\omega_1\left(f^{(r)},\frac\pi\sigma\right)_p+\sum_{\nu=1}^{\mu-r-1}A_{r,\nu}\omega_\nu\left(f^{(r)},\frac\pi\sigma\right)_p\right\}\\ +\left(\frac\pi\sigma\right)^r\biggl( \frac{\mathcal K_r}{\pi^r}-\sum_{\nu=0}^{\mu-r-1}2^\nu A_{r,\nu}\biggr)2^{r-\mu}\omega_{\mu-r}\left(f^{(r)},\frac\pi\sigma\right)_p, \end{gather*}
where for ${p=1,+\infty}$ the constants cannot be reduced on the class $W^{(r)}_p(\mathbb R)$. Here $\mathcal K_r=\frac4\pi\sum_{l=0}^\infty\frac{(-1)^{l(r+1)}}{(2l+1)^{r+1}}$ are the Favard constants, the constants $A_{r,\nu}$ are constructed explicitly, $\omega_\nu$ is a modulus of continuity of order $\nu$. As a corollary, we get the sharp Jackson type inequality
$$ \|f-\mathcal X_{\sigma,r,\mu}(f)\|_p\leqslant\frac{\mathcal K_r}{2\sigma^r}\omega_1\left(f^{(r)},\frac\pi\sigma\right)_p. $$
Key words and phrases: best approximation, nonperiodic splines, Jackson type inequalities.
Received: 02.05.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 234, Issue 3, Pages 303–317
DOI: https://doi.org/10.1007/s10958-018-4006-7
Document Type: Article
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, A. V. Gladkaya, “Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity”, Investigations on linear operators and function theory. Part 45, Zap. Nauchn. Sem. POMI, 456, POMI, St. Petersburg, 2017, 55–76; J. Math. Sci. (N. Y.), 234:3 (2018), 303–317
Citation in format AMSBIB
\Bibitem{VinGla17}
\by O.~L.~Vinogradov, A.~V.~Gladkaya
\paper Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity
\inbook Investigations on linear operators and function theory. Part~45
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 456
\pages 55--76
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6421}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 3
\pages 303--317
\crossref{https://doi.org/10.1007/s10958-018-4006-7}
Linking options:
  • https://www.mathnet.ru/eng/znsl6421
  • https://www.mathnet.ru/eng/znsl/v456/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :38
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024