|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 456, Pages 37–54
(Mi znsl6420)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On an equivalent norm on $\mathrm{BMO}$
I. Vasilyevab, A. Tselishchevab a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
Abstract:
We extand the inequality proved by S. V. Bochkarev to a larger class of convolution operators, assuming that the Fourier transforms of the kernels of these operators satisfy certain conditions in the spirit of the Hörmander–Mikhlin multiplier theorem. Therefore, we give a new characterization of $\mathrm{BMO}$.
Key words and phrases:
$\mathrm{BMO}$ space, Hörmander–Mikhlin multiplier theorem.
Received: 17.07.2017
Citation:
I. Vasilyev, A. Tselishchev, “On an equivalent norm on $\mathrm{BMO}$”, Investigations on linear operators and function theory. Part 45, Zap. Nauchn. Sem. POMI, 456, POMI, St. Petersburg, 2017, 37–54; J. Math. Sci. (N. Y.), 234:3 (2018), 290–302
Linking options:
https://www.mathnet.ru/eng/znsl6420 https://www.mathnet.ru/eng/znsl/v456/p37
|
Statistics & downloads: |
Abstract page: | 206 | Full-text PDF : | 57 | References: | 38 |
|