|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 455, Pages 209–225
(Mi znsl6416)
|
|
|
|
Subgroups of the general linear group containing the elementary subgroup over a commutative ring extension of rank 2
T. N. Hoi, N. H. T. Nhat Faculty of Mathematics and Computer Science, University of Science, VNU-HCM, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam
Abstract:
Let $R=\prod_{i\in I}F_i$ be a direct product of fields and let $S=R[\sqrt d]=\prod_{i\in I}F_i[\sqrt{d_i}]$ be a ring extension of rank 2 of $R$. The subgroups of the general linear group $\operatorname{GL}(2n,R)$, $n\geq3$ that contain the elementary group $E(n,S)$ are described. It is shown that for every such a subgroup $H$ there exists a unique ideal $A\unlhd R$ such that
$$
E(n,S)E(2n,R,A)\leq H\leq N_{\operatorname{GL}(2n,R)}(E(n,S)E(2n,R,A)).
$$
Key words and phrases:
general linear group, lattice of subgroups, ring extension subgroup.
Received: 05.04.2017
Citation:
T. N. Hoi, N. H. T. Nhat, “Subgroups of the general linear group containing the elementary subgroup over a commutative ring extension of rank 2”, Problems in the theory of representations of algebras and groups. Part 31, Zap. Nauchn. Sem. POMI, 455, POMI, St. Petersburg, 2017, 209–225; J. Math. Sci. (N. Y.), 234:2 (2018), 256–267
Linking options:
https://www.mathnet.ru/eng/znsl6416 https://www.mathnet.ru/eng/znsl/v455/p209
|
Statistics & downloads: |
Abstract page: | 127 | Full-text PDF : | 38 | References: | 24 |
|