Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 455, Pages 209–225 (Mi znsl6416)  

Subgroups of the general linear group containing the elementary subgroup over a commutative ring extension of rank 2

T. N. Hoi, N. H. T. Nhat

Faculty of Mathematics and Computer Science, University of Science, VNU-HCM, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam
References:
Abstract: Let $R=\prod_{i\in I}F_i$ be a direct product of fields and let $S=R[\sqrt d]=\prod_{i\in I}F_i[\sqrt{d_i}]$ be a ring extension of rank 2 of $R$. The subgroups of the general linear group $\operatorname{GL}(2n,R)$, $n\geq3$ that contain the elementary group $E(n,S)$ are described. It is shown that for every such a subgroup $H$ there exists a unique ideal $A\unlhd R$ such that
$$ E(n,S)E(2n,R,A)\leq H\leq N_{\operatorname{GL}(2n,R)}(E(n,S)E(2n,R,A)). $$
Key words and phrases: general linear group, lattice of subgroups, ring extension subgroup.
Funding agency Grant number
University of Science Ho Chi Minh City C2017-18-18
This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2017-18-18.
Received: 05.04.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 234, Issue 2, Pages 256–267
DOI: https://doi.org/10.1007/s10958-018-4001-z
Bibliographic databases:
Document Type: Article
UDC: 512.743
Language: English
Citation: T. N. Hoi, N. H. T. Nhat, “Subgroups of the general linear group containing the elementary subgroup over a commutative ring extension of rank 2”, Problems in the theory of representations of algebras and groups. Part 31, Zap. Nauchn. Sem. POMI, 455, POMI, St. Petersburg, 2017, 209–225; J. Math. Sci. (N. Y.), 234:2 (2018), 256–267
Citation in format AMSBIB
\Bibitem{HoiNha17}
\by T.~N.~Hoi, N.~H.~T.~Nhat
\paper Subgroups of the general linear group containing the elementary subgroup over a~commutative ring extension of rank~2
\inbook Problems in the theory of representations of algebras and groups. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 455
\pages 209--225
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6416}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3669630}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 2
\pages 256--267
\crossref{https://doi.org/10.1007/s10958-018-4001-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl6416
  • https://www.mathnet.ru/eng/znsl/v455/p209
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :42
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024