Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2017, Volume 455, Pages 122–129 (Mi znsl6411)  

This article is cited in 4 scientific papers (total in 4 papers)

The normalizer of the elementary linear group of a module arising under extension of the base ring

N. H. T. Nhat, T. N. Hoi

Faculty of Mathematics and Computer Science, University of Science, VNU-HCM, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam
Full-text PDF (176 kB) Citations (4)
References:
Abstract: Let $S$ be a commutative ring with $1$ and $R$ a unital subring. Let $M$ be a free $S$-module of rank $n\geq3$. In [1], V. A. Koibaev described the normalizer of $\operatorname{Aut}_S(M)$ in the group $\operatorname{Aut}_R(M)$. In this paper, we show that in $\operatorname{Aut}_R(M)$ the normalizer of the elementary linear group $E_\mathfrak B(M)$ coincides with the one of $\operatorname{Aut}_S(M)$, namely, $N_{\operatorname{Aut}_R(M)}(E_\mathfrak B(M))=\operatorname{Aut}(S/R)\ltimes\operatorname{Aut}_S(M)$. If $S$ is free of rank $m$ as an $R$-module, then $N_{\operatorname{GL}(mn,R)}(E(n,S))=\operatorname{Aut}(S/R)\ltimes\operatorname{GL}(n,S)$, moreover, for any proper ideal $A$ of $R$, we have
$$ N_{\operatorname{GL}(mn, R)}(E(n,S)E(mn,R,A))=\rho_A^{-1}(N_{\operatorname{GL}(mn,R/A)}(E(n,S/SA))). $$
Key words and phrases: automorphism group of a module, lattice of subgroups, ring extension subgroup, normalizer.
Funding agency Grant number
University of Science Ho Chi Minh City C2017-18-18
This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2017-18-18.
Received: 05.04.2017
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 234, Issue 2, Pages 197–202
DOI: https://doi.org/10.1007/s10958-018-3996-5
Document Type: Article
UDC: 512.743
Language: English
Citation: N. H. T. Nhat, T. N. Hoi, “The normalizer of the elementary linear group of a module arising under extension of the base ring”, Problems in the theory of representations of algebras and groups. Part 31, Zap. Nauchn. Sem. POMI, 455, POMI, St. Petersburg, 2017, 122–129; J. Math. Sci. (N. Y.), 234:2 (2018), 197–202
Citation in format AMSBIB
\Bibitem{NhaHoi17}
\by N.~H.~T.~Nhat, T.~N.~Hoi
\paper The normalizer of the elementary linear group of a~module arising under extension of the base ring
\inbook Problems in the theory of representations of algebras and groups. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2017
\vol 455
\pages 122--129
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6411}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 2
\pages 197--202
\crossref{https://doi.org/10.1007/s10958-018-3996-5}
Linking options:
  • https://www.mathnet.ru/eng/znsl6411
  • https://www.mathnet.ru/eng/znsl/v455/p122
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :43
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024