|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 455, Pages 122–129
(Mi znsl6411)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
The normalizer of the elementary linear group of a module arising under extension of the base ring
N. H. T. Nhat, T. N. Hoi Faculty of Mathematics and Computer Science, University of Science, VNU-HCM, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam
Abstract:
Let $S$ be a commutative ring with $1$ and $R$ a unital subring. Let $M$ be a free $S$-module of rank $n\geq3$. In [1], V. A. Koibaev described the normalizer of $\operatorname{Aut}_S(M)$ in the group $\operatorname{Aut}_R(M)$. In this paper, we show that in $\operatorname{Aut}_R(M)$ the normalizer of the elementary linear group $E_\mathfrak B(M)$ coincides with the one of $\operatorname{Aut}_S(M)$, namely, $N_{\operatorname{Aut}_R(M)}(E_\mathfrak B(M))=\operatorname{Aut}(S/R)\ltimes\operatorname{Aut}_S(M)$. If $S$ is free of rank $m$ as an $R$-module, then $N_{\operatorname{GL}(mn,R)}(E(n,S))=\operatorname{Aut}(S/R)\ltimes\operatorname{GL}(n,S)$, moreover, for any proper ideal $A$ of $R$, we have
$$
N_{\operatorname{GL}(mn, R)}(E(n,S)E(mn,R,A))=\rho_A^{-1}(N_{\operatorname{GL}(mn,R/A)}(E(n,S/SA))).
$$
Key words and phrases:
automorphism group of a module, lattice of subgroups, ring extension subgroup, normalizer.
Received: 05.04.2017
Citation:
N. H. T. Nhat, T. N. Hoi, “The normalizer of the elementary linear group of a module arising under extension of the base ring”, Problems in the theory of representations of algebras and groups. Part 31, Zap. Nauchn. Sem. POMI, 455, POMI, St. Petersburg, 2017, 122–129; J. Math. Sci. (N. Y.), 234:2 (2018), 197–202
Linking options:
https://www.mathnet.ru/eng/znsl6411 https://www.mathnet.ru/eng/znsl/v455/p122
|
Statistics & downloads: |
Abstract page: | 204 | Full-text PDF : | 43 | References: | 44 |
|