Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 250, Pages 22–34 (Mi znsl639)  

Creeping waves on a strongly elongated body of revolution

I. V. Andronov

Saint-Petersburg State University
Abstract: The creeping waves in the problem of diffraction by smooth convex body play an important role as they give the asymptotics of the diffracted field in the shaddow. The known results, obtained by the boundary layer method do not explain the properties of the creeping waves on strongly elongated bodies. In this paper the creeping waves on strongly elongated bodies when the binormal curvature is asymptoticaly large are studied. The derived asymptotics contains solutions of the Heun differential equation. The numerical analysis of the dispersion euqation is carried out and shows that magnetic creeping wave travels along the surface of elongated body with essentially smaller attenuation compared to the predication of usual theory.
Received: 20.10.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 102, Issue 4, Pages 4149–4156
DOI: https://doi.org/10.1007/BF02673845
Bibliographic databases:
UDC: 621.371
Language: Russian
Citation: I. V. Andronov, “Creeping waves on a strongly elongated body of revolution”, Mathematical problems in the theory of wave propagation. Part 27, Zap. Nauchn. Sem. POMI, 250, POMI, St. Petersburg, 1998, 22–34; J. Math. Sci. (New York), 102:4 (2000), 4149–4156
Citation in format AMSBIB
\Bibitem{And98}
\by I.~V.~Andronov
\paper Creeping waves on a strongly elongated body of revolution
\inbook Mathematical problems in the theory of wave propagation. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 250
\pages 22--34
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701856}
\zmath{https://zbmath.org/?q=an:1071.35535}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 102
\issue 4
\pages 4149--4156
\crossref{https://doi.org/10.1007/BF02673845}
Linking options:
  • https://www.mathnet.ru/eng/znsl639
  • https://www.mathnet.ru/eng/znsl/v250/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024