Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 454, Pages 121–150 (Mi znsl6388)  

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic expansion of posterior distribution of parameter centered by a $\sqrt n$-consistent estimate

A. A. Zaikin

Institute of Computer Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan, Russia
Full-text PDF (304 kB) Citations (2)
References:
Abstract: The article studies asymptotic behaviour of posterior distribution of a real parameter centered by a $\sqrt n$-consistent estimate. An analogue of Bernstein–von Mises theorem is presented. The article emphasizes uniformity of the result. In the same framework asymptotic expansions of posterior distribution and posterior mean of functions bounded by polynomial are constructed.
Key words and phrases: posterior distribution, Bernstein-von Mises theorem, asymptotic expansion, $\sqrt n$-consistent estimates.
Received: 11.10.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 229, Issue 6, Pages 678–697
DOI: https://doi.org/10.1007/s10958-018-3707-2
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. A. Zaikin, “Asymptotic expansion of posterior distribution of parameter centered by a $\sqrt n$-consistent estimate”, Probability and statistics. Part 24, Zap. Nauchn. Sem. POMI, 454, POMI, St. Petersburg, 2016, 121–150; J. Math. Sci. (N. Y.), 229:6 (2018), 678–697
Citation in format AMSBIB
\Bibitem{Zai16}
\by A.~A.~Zaikin
\paper Asymptotic expansion of posterior distribution of parameter centered by a~$\sqrt n$-consistent estimate
\inbook Probability and statistics. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 454
\pages 121--150
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3602405}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 229
\issue 6
\pages 678--697
\crossref{https://doi.org/10.1007/s10958-018-3707-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042208700}
Linking options:
  • https://www.mathnet.ru/eng/znsl6388
  • https://www.mathnet.ru/eng/znsl/v454/p121
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :35
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024