Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 454, Pages 102–111 (Mi znsl6386)  

This article is cited in 5 scientific papers (total in 5 papers)

Correlation functions of real zeros of random polynomials

F. Götzea, D. Koliadab, D. Zaporozhetsc

a Faculty of Mathematics, Bielefeld University, P.O. Box 10 01 31, 33501 Bielefeld, Germany
b Institute of Mathematics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
c St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
Full-text PDF (178 kB) Citations (5)
References:
Abstract: We give an explicit formula for the correlation functions of real zeros of a random polynomial with arbitrary independent continuously distributed coefficients.
Key words and phrases: random polynomial, correlation between zeros, joint intensities, Coarea formula.
Funding agency Grant number
Bielefeld University SFB 701
Russian Foundation for Basic Research 16-01-00367
Russian Academy of Sciences - Federal Agency for Scientific Organizations
The work was done with the financial support of the Bielefeld University (Germany) in terms of project SFB 701. The work of the third author is supported by the grant RFBR 16-01-00367 and by the Program of Fundamental Researches of Russian Academy of Sciences “Modern Problems of Fundamental Mathematics”.
Received: 16.11.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 229, Issue 6, Pages 664–670
DOI: https://doi.org/10.1007/s10958-018-3705-4
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: English
Citation: F. Götze, D. Koliada, D. Zaporozhets, “Correlation functions of real zeros of random polynomials”, Probability and statistics. Part 24, Zap. Nauchn. Sem. POMI, 454, POMI, St. Petersburg, 2016, 102–111; J. Math. Sci. (N. Y.), 229:6 (2018), 664–670
Citation in format AMSBIB
\Bibitem{GotKolZap16}
\by F.~G\"otze, D.~Koliada, D.~Zaporozhets
\paper Correlation functions of real zeros of random polynomials
\inbook Probability and statistics. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 454
\pages 102--111
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6386}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3602403}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 229
\issue 6
\pages 664--670
\crossref{https://doi.org/10.1007/s10958-018-3705-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042236225}
Linking options:
  • https://www.mathnet.ru/eng/znsl6386
  • https://www.mathnet.ru/eng/znsl/v454/p102
  • This publication is cited in the following 5 articles:
    1. Marcus Michelen, Sean O'Rourke, “On random polynomials with an intermediate number of real roots”, Proc. Amer. Math. Soc., 152:11 (2024), 4933  crossref
    2. Nguyen O., Vu V., “Roots of Random Functions: a Framework For Local Universality”, Am. J. Math., 144:1 (2022), 1–74  isi
    3. Oanh Nguyen, Van Vu, “Random polynomials: Central limit theorems for the real roots”, Duke Math. J., 170:17 (2021)  crossref
    4. Yen Do, Van Vu, “Central limit theorems for the real zeros of Weyl polynomials”, Am. J. Math., 142:5 (2020), 1327–1369  crossref  mathscinet  zmath  isi
    5. F. Goetze, D. Koleda, D. Zaporozhets, “Joint distribution of conjugate algebraic numbers: a random polynomial approach”, Adv. Math., 359 (2020), 106849  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025