Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 453, Pages 189–197 (Mi znsl6378)  

This article is cited in 3 scientific papers (total in 3 papers)

Possible dimensions of subspace intersections for five direct summands

N. A. Lebedinskayaa, D. M. Lebedinskiia, A. A. Smirnovb

a St. Petersburg State University, St. Petersburg, Russia
b Mozhaiskiy Space Military Academy, St. Petersburg, Russia
Full-text PDF (166 kB) Citations (3)
References:
Abstract: The paper consides the problem on the dimensions of the intersections of a subspace in the direct sum of a finite series of finite-dimensional vector spaces with the sums of pairs of direct summands, provided that the subspace intersection with each of these direct summands is empty. The problem is naturally divided into two ones: Find conditions for the existence and for the representability of the corresponding matroid. The following theorem is proved: If the ranks of all the unions of a series of blocks satisfying the condition for the ranks of subsets in the matroid are given and the blocks have full rank, then this partial rank function can be extended to a full rank function for all the subsets of the base set (the union of all the blocks). Necessary and sufficient conditions on the dimensions of the direct summands and intersections mentioned above for the corresponding matroid to exist are obtained in the case of five direct summands.
Key words and phrases: direct sum, subspace, matroid.
Received: 17.10.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 6, Pages 937–941
DOI: https://doi.org/10.1007/s10958-017-3463-8
Bibliographic databases:
Document Type: Article
UDC: 519.112.1
Language: Russian
Citation: N. A. Lebedinskaya, D. M. Lebedinskii, A. A. Smirnov, “Possible dimensions of subspace intersections for five direct summands”, Computational methods and algorithms. Part XXIX, Zap. Nauchn. Sem. POMI, 453, POMI, St. Petersburg, 2016, 189–197; J. Math. Sci. (N. Y.), 224:6 (2017), 937–941
Citation in format AMSBIB
\Bibitem{LebLebSmi16}
\by N.~A.~Lebedinskaya, D.~M.~Lebedinskii, A.~A.~Smirnov
\paper Possible dimensions of subspace intersections for five direct summands
\inbook Computational methods and algorithms. Part~XXIX
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 453
\pages 189--197
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3593987}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 6
\pages 937--941
\crossref{https://doi.org/10.1007/s10958-017-3463-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021214923}
Linking options:
  • https://www.mathnet.ru/eng/znsl6378
  • https://www.mathnet.ru/eng/znsl/v453/p189
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :30
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024