|
Zapiski Nauchnykh Seminarov POMI, 2016, Volume 453, Pages 148–171
(Mi znsl6376)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses
L. Yu. Kolotilina St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
The paper introduces new subclasses, called $\mathrm P\mathcal H\mathrm N(\pi)$ and $\mathrm P\mathcal H\mathrm{QN}(\pi)$, of (nonsingular) $\mathcal H$-matrices of order $n$ dependent on a partition $\pi$ of the index set $\{1,\dots,n\}$, which generalize the classes $\mathrm P\mathcal H(\pi)$, introduced previously, and contain, in particular, such subclasses as those of strictly diagonally dominant (SDD), Nekrasov, $S$-SDD, $S$-Nekrasov, $\mathrm{QN}$, and $\mathrm P\mathcal H(\pi)$ matrices. Properties of the matrices introduced are studied, and upper bounds on their inverses in $l_\infty$ norm are obtained. Block generalizations of the classes $\mathrm P\mathcal H\mathrm N(\pi)$ and $\mathrm P\mathcal H\mathrm{QN}(\pi)$ in the sense of Robert are considered.
Also a general approach to defining subclasses $\mathcal K^\pi$ of the class $\mathcal H$ containing a given subclass $\mathcal{K\subset H}$ and dependent on a partition $\pi$ is presented.
Key words and phrases:
$\mathcal H$-matrix, SDD matrix, Nekrasov matrix, $S$-Nekrasov matrix, $\mathrm{QN}$ matrix, $S$-SDD matrix, $\mathrm P\mathcal H$-matrix, $\mathrm P\mathcal H\mathrm N$-matrix, $\mathrm P\mathcal H\mathrm{QN}$-matrix, inverse matrix, infinity norm, upper bound.
Received: 30.09.2016
Citation:
L. Yu. Kolotilina, “New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses”, Computational methods and algorithms. Part XXIX, Zap. Nauchn. Sem. POMI, 453, POMI, St. Petersburg, 2016, 148–171; J. Math. Sci. (N. Y.), 224:6 (2017), 911–925
Linking options:
https://www.mathnet.ru/eng/znsl6376 https://www.mathnet.ru/eng/znsl/v453/p148
|
Statistics & downloads: |
Abstract page: | 202 | Full-text PDF : | 48 | References: | 47 |
|