Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 453, Pages 148–171 (Mi znsl6376)  

This article is cited in 6 scientific papers (total in 6 papers)

New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses

L. Yu. Kolotilina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (256 kB) Citations (6)
References:
Abstract: The paper introduces new subclasses, called $\mathrm P\mathcal H\mathrm N(\pi)$ and $\mathrm P\mathcal H\mathrm{QN}(\pi)$, of (nonsingular) $\mathcal H$-matrices of order $n$ dependent on a partition $\pi$ of the index set $\{1,\dots,n\}$, which generalize the classes $\mathrm P\mathcal H(\pi)$, introduced previously, and contain, in particular, such subclasses as those of strictly diagonally dominant (SDD), Nekrasov, $S$-SDD, $S$-Nekrasov, $\mathrm{QN}$, and $\mathrm P\mathcal H(\pi)$ matrices. Properties of the matrices introduced are studied, and upper bounds on their inverses in $l_\infty$ norm are obtained. Block generalizations of the classes $\mathrm P\mathcal H\mathrm N(\pi)$ and $\mathrm P\mathcal H\mathrm{QN}(\pi)$ in the sense of Robert are considered.
Also a general approach to defining subclasses $\mathcal K^\pi$ of the class $\mathcal H$ containing a given subclass $\mathcal{K\subset H}$ and dependent on a partition $\pi$ is presented.
Key words and phrases: $\mathcal H$-matrix, SDD matrix, Nekrasov matrix, $S$-Nekrasov matrix, $\mathrm{QN}$ matrix, $S$-SDD matrix, $\mathrm P\mathcal H$-matrix, $\mathrm P\mathcal H\mathrm N$-matrix, $\mathrm P\mathcal H\mathrm{QN}$-matrix, inverse matrix, infinity norm, upper bound.
Received: 30.09.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 6, Pages 911–925
DOI: https://doi.org/10.1007/s10958-017-3461-x
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses”, Computational methods and algorithms. Part XXIX, Zap. Nauchn. Sem. POMI, 453, POMI, St. Petersburg, 2016, 148–171; J. Math. Sci. (N. Y.), 224:6 (2017), 911–925
Citation in format AMSBIB
\Bibitem{Kol16}
\by L.~Yu.~Kolotilina
\paper New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses
\inbook Computational methods and algorithms. Part~XXIX
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 453
\pages 148--171
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6376}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3593985}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 6
\pages 911--925
\crossref{https://doi.org/10.1007/s10958-017-3461-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021273999}
Linking options:
  • https://www.mathnet.ru/eng/znsl6376
  • https://www.mathnet.ru/eng/znsl/v453/p148
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :48
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024