Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 453, Pages 131–147 (Mi znsl6375)  

This article is cited in 4 scientific papers (total in 4 papers)

Least squares methods in Krylov subspaces

V. P. Il'inab

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (216 kB) Citations (4)
References:
Abstract: The paper considers iterative algorithms for solving large systems of linear algebraic equations with sparse nonsymmetric matrices based on solution of least squares problems in Krylov subspaces and generalizing the alternating Anderson–Jacobi method. The approaches suggested are compared with the classical Krylov methods, represented by the method of semi-conjugate residuals. The efficiency of parallel implementation and speedup are estimated and illustrated with numerical results obtained for a series of linear systems resulting from discretization of convection-diffusion boundary-value problems.
Key words and phrases: iterative methods, Krykov subspaces, nonsymmetric matrices, parallel algorithms, least squares methods, numerical experiments.
Funding agency Grant number
Russian Science Foundation 14-11-00485
Russian Foundation for Basic Research 16-29-15122
Received: 11.11.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 6, Pages 900–910
DOI: https://doi.org/10.1007/s10958-017-3460-y
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: V. P. Il'in, “Least squares methods in Krylov subspaces”, Computational methods and algorithms. Part XXIX, Zap. Nauchn. Sem. POMI, 453, POMI, St. Petersburg, 2016, 131–147; J. Math. Sci. (N. Y.), 224:6 (2017), 900–910
Citation in format AMSBIB
\Bibitem{Ili16}
\by V.~P.~Il'in
\paper Least squares methods in Krylov subspaces
\inbook Computational methods and algorithms. Part~XXIX
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 453
\pages 131--147
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3593984}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 6
\pages 900--910
\crossref{https://doi.org/10.1007/s10958-017-3460-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021305353}
Linking options:
  • https://www.mathnet.ru/eng/znsl6375
  • https://www.mathnet.ru/eng/znsl/v453/p131
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :94
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024