Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 453, Pages 104–113 (Mi znsl6373)  

This article is cited in 1 scientific paper (total in 1 paper)

The congruence centralizer of the Sergeichuk–Horn matrix

Kh. D. Ikramov

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (155 kB) Citations (1)
References:
Abstract: Let $A$ be a complex $n\times n$ matrix. We call the set of matrices $X$ such that $X^*AX=A$ the congruence centralizer of $A$. This is an analog of the classical centralizer of $A$ in the case where the group $\mathrm{GL}_n(\mathbb C)$ acts on the matrix space $M_n(\mathbb C)$ by congruence rather than similarity.
We find the congruence centralizer of the matrix
$$ \Delta_n=\left(
\begin{array}{cccc} &&&1\\ &&\cdots&i\\ &1&\cdots&\\ 1&i&& \end{array}
\right). $$
This matrix represents one of the three types of building blocks for the canonical form of square complex matrices with respect to congruences found by R. Horn and V. Sergeichuk.
Key words and phrases: centralizer, congruence centralizer, Toeplitz matrix, backward identity matrix.
Received: 31.03.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 6, Pages 883–889
DOI: https://doi.org/10.1007/s10958-017-3458-5
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: Kh. D. Ikramov, “The congruence centralizer of the Sergeichuk–Horn matrix”, Computational methods and algorithms. Part XXIX, Zap. Nauchn. Sem. POMI, 453, POMI, St. Petersburg, 2016, 104–113; J. Math. Sci. (N. Y.), 224:6 (2017), 883–889
Citation in format AMSBIB
\Bibitem{Ikr16}
\by Kh.~D.~Ikramov
\paper The congruence centralizer of the Sergeichuk--Horn matrix
\inbook Computational methods and algorithms. Part~XXIX
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 453
\pages 104--113
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6373}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3593982}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 6
\pages 883--889
\crossref{https://doi.org/10.1007/s10958-017-3458-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021262389}
Linking options:
  • https://www.mathnet.ru/eng/znsl6373
  • https://www.mathnet.ru/eng/znsl/v453/p104
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :67
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024