Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 453, Pages 85–95 (Mi znsl6371)  

On the congruent centralizer of the Jordan block

Kh. D. Ikramov

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: The congruent centralizer of a complex $n\times n$ matrix $A$ is the set of $n\times n$ matrices $Z$ such that $Z^*AZ=A$. This set is an analog of the classical centralizer in the case where the similarity relation on the space of $n\times n$ matrices is replaced by the congruence relation.
The study of the classical centralizer $\mathcal C_A$ reduces to describing the set of solutions to the linear matrix equation $AZ=ZA$. The structure of this set is well known and is explained in many monographs on matrix theory. As to the congruent centralizer, its analysis amounts to a description of the solution set of a system of $n^2$ quadratic equations for $n^2$ unknowns. The complexity of this problem is the reason why we still have no description of the congruent centralizer $C_J^*$ even for the simplest case of the Jordan block $J=J_n(0)$ with zero on the principal diagonal. This paper presents certain facts concerning the structure of matrices in $C_J^*$ for an arbitrary $n$ and then gives complete descriptions of the groups $C_J^*$ for $n=2,3,4,5$.
Key words and phrases: congruences, centralizer, Jordan block, eigenvector.
Received: 14.03.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 6, Pages 869–876
DOI: https://doi.org/10.1007/s10958-017-3456-7
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: Kh. D. Ikramov, “On the congruent centralizer of the Jordan block”, Computational methods and algorithms. Part XXIX, Zap. Nauchn. Sem. POMI, 453, POMI, St. Petersburg, 2016, 85–95; J. Math. Sci. (N. Y.), 224:6 (2017), 869–876
Citation in format AMSBIB
\Bibitem{Ikr16}
\by Kh.~D.~Ikramov
\paper On the congruent centralizer of the Jordan block
\inbook Computational methods and algorithms. Part~XXIX
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 453
\pages 85--95
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3593980}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 6
\pages 869--876
\crossref{https://doi.org/10.1007/s10958-017-3456-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021282302}
Linking options:
  • https://www.mathnet.ru/eng/znsl6371
  • https://www.mathnet.ru/eng/znsl/v453/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :52
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024