Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1998, Volume 248, Pages 242–246 (Mi znsl637)  

A convergence theorem for the Newton method

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: The convergence of the Newton method is established dor equations of the form $Tx+F(x)=0$, where $T$ is an unbounded operator, and the Fréchet derivative $F'(u)$ of the operator $F(u)$ satisfies Hölder's condition.
Received: 03.11.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 101, Issue 4, Pages 3372–3375
DOI: https://doi.org/10.1007/BF02672781
Bibliographic databases:
UDC: 519
Language: Russian
Citation: M. N. Yakovlev, “A convergence theorem for the Newton method”, Computational methods and algorithms. Part XIII, Zap. Nauchn. Sem. POMI, 248, POMI, St. Petersburg, 1998, 242–246; J. Math. Sci. (New York), 101:4 (2000), 3372–3375
Citation in format AMSBIB
\Bibitem{Yak98}
\by M.~N.~Yakovlev
\paper A convergence theorem for the Newton method
\inbook Computational methods and algorithms. Part~XIII
\serial Zap. Nauchn. Sem. POMI
\yr 1998
\vol 248
\pages 242--246
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1693209}
\zmath{https://zbmath.org/?q=an:0960.65068}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 101
\issue 4
\pages 3372--3375
\crossref{https://doi.org/10.1007/BF02672781}
Linking options:
  • https://www.mathnet.ru/eng/znsl637
  • https://www.mathnet.ru/eng/znsl/v248/p242
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :204
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024