|
Zapiski Nauchnykh Seminarov POMI, 1998, Volume 248, Pages 242–246
(Mi znsl637)
|
|
|
|
A convergence theorem for the Newton method
M. N. Yakovlev St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
The convergence of the Newton method is established dor equations of the form $Tx+F(x)=0$, where
$T$ is an unbounded operator, and the Fréchet derivative $F'(u)$ of the operator $F(u)$ satisfies Hölder's
condition.
Received: 03.11.1997
Citation:
M. N. Yakovlev, “A convergence theorem for the Newton method”, Computational methods and algorithms. Part XIII, Zap. Nauchn. Sem. POMI, 248, POMI, St. Petersburg, 1998, 242–246; J. Math. Sci. (New York), 101:4 (2000), 3372–3375
Linking options:
https://www.mathnet.ru/eng/znsl637 https://www.mathnet.ru/eng/znsl/v248/p242
|
Statistics & downloads: |
Abstract page: | 417 | Full-text PDF : | 204 |
|