Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 452, Pages 132–157 (Mi znsl6360)  

This article is cited in 4 scientific papers (total in 4 papers)

On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$

D. D. Kiseleva, I. A. Chubarovb

a All-Russian Academy of International Trade, Moscow, Russia
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
Full-text PDF (278 kB) Citations (4)
References:
Abstract: For any nonsplit $p>2$-extensions of finite groups with cyclic kernel and a quotient-group with two generators which acompanying extensions are semisimple there exists a realization of the quotient-group as Galois group of number fields such as corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).
Key words and phrases: ultrasolvability, embedding problem, minimal extensions.
Received: 08.07.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 5, Pages 677–692
DOI: https://doi.org/10.1007/s10958-018-3897-7
Bibliographic databases:
Document Type: Article
UDC: 512.623.32
Language: Russian
Citation: D. D. Kiselev, I. A. Chubarov, “On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$”, Problems in the theory of representations of algebras and groups. Part 30, Zap. Nauchn. Sem. POMI, 452, POMI, St. Petersburg, 2016, 132–157; J. Math. Sci. (N. Y.), 232:5 (2018), 677–692
Citation in format AMSBIB
\Bibitem{KisChu16}
\by D.~D.~Kiselev, I.~A.~Chubarov
\paper On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for~$p>2$
\inbook Problems in the theory of representations of algebras and groups. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 452
\pages 132--157
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589287}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 5
\pages 677--692
\crossref{https://doi.org/10.1007/s10958-018-3897-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048363977}
Linking options:
  • https://www.mathnet.ru/eng/znsl6360
  • https://www.mathnet.ru/eng/znsl/v452/p132
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:164
    Full-text PDF :48
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024