Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 452, Pages 108–131 (Mi znsl6359)  

This article is cited in 4 scientific papers (total in 4 papers)

On ultrasolvability of $p$-extensions of an abelian group by a cyclic kernel

D. D. Kiselev

All-Russian Academy of International Trade, Moscow, Russia
Full-text PDF (289 kB) Citations (4)
References:
Abstract: We solve a problem in the embedding theory by A. V. Yakovlev for $p$-extensions of odd order with cyclic normal subgroup and abelian quotient-group: for such nonsplit extensions there exists a realization for the quotient-group as Galois group over number fields such as corresponding embedding problem is ultrasolvable (i.e. this embedding problem is solvable and has only fields as solutions). Also we give a solution for embedding problems of $p$-extensions of odd order with kernel of order $p$ and with a quotient-group which is represented by direct product of its proper subgroups – this is a generalization for $p>2$ an analogous result for $p=2$ by A. Ledet.
Key words and phrases: ultrasolvability, embedding problem.
Received: 04.07.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 5, Pages 662–676
DOI: https://doi.org/10.1007/s10958-018-3896-8
Bibliographic databases:
Document Type: Article
UDC: 512.623.32
Language: Russian
Citation: D. D. Kiselev, “On ultrasolvability of $p$-extensions of an abelian group by a cyclic kernel”, Problems in the theory of representations of algebras and groups. Part 30, Zap. Nauchn. Sem. POMI, 452, POMI, St. Petersburg, 2016, 108–131; J. Math. Sci. (N. Y.), 232:5 (2018), 662–676
Citation in format AMSBIB
\Bibitem{Kis16}
\by D.~D.~Kiselev
\paper On ultrasolvability of $p$-extensions of an abelian group by a~cyclic kernel
\inbook Problems in the theory of representations of algebras and groups. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 452
\pages 108--131
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589286}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 5
\pages 662--676
\crossref{https://doi.org/10.1007/s10958-018-3896-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048497646}
Linking options:
  • https://www.mathnet.ru/eng/znsl6359
  • https://www.mathnet.ru/eng/znsl/v452/p108
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :39
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024