Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 452, Pages 86–107 (Mi znsl6358)  

This article is cited in 2 scientific papers (total in 2 papers)

Double cosets of stabilizers of totally isotropic subspaces in a special unitary group I

N. Gordeevab, U. Rehmannc

a Department of Mathematics, Russian State Pedagogical University, Moijka 48, St. Petersburg 191186, Russia
b St. Petersburg State University, Universitetsky prospekt, 28, Peterhof, St. Petersburg, 198504, Russia
c Ulf Rehmann, Department of Mathematics, Bielefeled University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
Full-text PDF (259 kB) Citations (2)
References:
Abstract: Let $D$ be a division algebra with a fixed involution and let $V$ be the corresponding unitary space over $D$ with $T$-condition (see [2]). For a pair of totally isotropic subspaces $u,v\leq V$ we consider the double cosets $P_u\gamma P_v$ of their stabilizers $P_u,P_v$ in $\Gamma=\mathrm{SU}(V)$. We give a description of cosets $P_u\gamma P_v$ in the terms of the intersection distance $d_\mathrm{in}(u,\gamma(v))$ and the Witt index of $u+\gamma(v)$.
Key words and phrases: classical algebraic groups, double cosets of closed subgroups, intersection distance.
Received: 22.09.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 5, Pages 647–661
DOI: https://doi.org/10.1007/s10958-018-3895-9
Bibliographic databases:
Document Type: Article
UDC: 512.74
Language: English
Citation: N. Gordeev, U. Rehmann, “Double cosets of stabilizers of totally isotropic subspaces in a special unitary group I”, Problems in the theory of representations of algebras and groups. Part 30, Zap. Nauchn. Sem. POMI, 452, POMI, St. Petersburg, 2016, 86–107; J. Math. Sci. (N. Y.), 232:5 (2018), 647–661
Citation in format AMSBIB
\Bibitem{GorReh16}
\by N.~Gordeev, U.~Rehmann
\paper Double cosets of stabilizers of totally isotropic subspaces in a~special unitary group~I
\inbook Problems in the theory of representations of algebras and groups. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 452
\pages 86--107
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6358}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589285}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 5
\pages 647--661
\crossref{https://doi.org/10.1007/s10958-018-3895-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048505512}
Linking options:
  • https://www.mathnet.ru/eng/znsl6358
  • https://www.mathnet.ru/eng/znsl/v452/p86
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :55
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024