Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 452, Pages 5–31 (Mi znsl6354)  

This article is cited in 3 scientific papers (total in 3 papers)

Local-global principle for general quadratic and general Hermitian groups and the nilpotence of $\mathrm{KH}_1$

R. Basu

Indian Institute of Science Education and Research — Pune, Maharashtra 411008, India
Full-text PDF (283 kB) Citations (3)
References:
Abstract: In this article we establish an analog of the Quillen–Suslin's local-global principle for the elementary subgroup of the general quadratic group and the general Hermitian group. We show that unstable $\mathrm K_1$-groups of general Hermitian groups over module finite rings are nilpotent-by-abelian. This generalizes earlier results of A. Bak, R. Hazrat, and N. Vavilov.
Key words and phrases: bilinear forms, quadratic forms.
Received: 11.10.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 5, Pages 591–609
DOI: https://doi.org/10.1007/s10958-018-3891-0
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: English
Citation: R. Basu, “Local-global principle for general quadratic and general Hermitian groups and the nilpotence of $\mathrm{KH}_1$”, Problems in the theory of representations of algebras and groups. Part 30, Zap. Nauchn. Sem. POMI, 452, POMI, St. Petersburg, 2016, 5–31; J. Math. Sci. (N. Y.), 232:5 (2018), 591–609
Citation in format AMSBIB
\Bibitem{Bas16}
\by R.~Basu
\paper Local-global principle for general quadratic and general Hermitian groups and the nilpotence of~$\mathrm{KH}_1$
\inbook Problems in the theory of representations of algebras and groups. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 452
\pages 5--31
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6354}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589281}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 5
\pages 591--609
\crossref{https://doi.org/10.1007/s10958-018-3891-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048499482}
Linking options:
  • https://www.mathnet.ru/eng/znsl6354
  • https://www.mathnet.ru/eng/znsl/v452/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :36
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024