Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 451, Pages 65–78 (Mi znsl6347)  

This article is cited in 6 scientific papers (total in 6 papers)

On shortwave diffraction by elongated body. Numerical experiments

N. Ya. Kirpichnikova, M. M. Popov, N. M. Semtchenok

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (301 kB) Citations (6)
References:
Abstract: The paper is a continuation of previous works of the authors dealing with the exploration of shortwave diffraction by smooth and strictly convex bodies of revolution (axisymmetric case). In these problems the boundary layer method contains two large parameters: one is the Fock parameter $M$ and the second one $\Lambda$ which characterizes the oblongness of the scatterer. It naturally generates a possibility to use the two scaled asymptotic expansion where both $M$ and $\Lambda$ are regarded as independent. The approximate formulae for the wave field in this situation depend on mutual strength between the large parameters and may vary. In the paper we carry out numerical experiments with our formulae, in the case when Fock analytical solution is in good coincidence with exact solution of a model problem, in order to examine influence of the parameter $\Lambda$ on the wave field. It follows from our numerical experiments that the influence of the oblongness of the scatterer on the wave field is really insignificant if the method of Leontovich–Fock parabolick equation does not meet mathematical problems.
Key words and phrases: diffraction of short waves by prolate body of revolution, Leontovich–Fock equation, ray method, matching of local asymptotics.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00535-А
Received: 21.09.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 226, Issue 6, Pages 734–743
DOI: https://doi.org/10.1007/s10958-017-3563-5
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: N. Ya. Kirpichnikova, M. M. Popov, N. M. Semtchenok, “On shortwave diffraction by elongated body. Numerical experiments”, Mathematical problems in the theory of wave propagation. Part 46, Zap. Nauchn. Sem. POMI, 451, POMI, St. Petersburg, 2016, 65–78; J. Math. Sci. (N. Y.), 226:6 (2017), 734–743
Citation in format AMSBIB
\Bibitem{KirPopSem16}
\by N.~Ya.~Kirpichnikova, M.~M.~Popov, N.~M.~Semtchenok
\paper On shortwave diffraction by elongated body. Numerical experiments
\inbook Mathematical problems in the theory of wave propagation. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 451
\pages 65--78
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6347}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589168}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 226
\issue 6
\pages 734--743
\crossref{https://doi.org/10.1007/s10958-017-3563-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031491759}
Linking options:
  • https://www.mathnet.ru/eng/znsl6347
  • https://www.mathnet.ru/eng/znsl/v451/p65
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :49
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024