Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 451, Pages 54–64 (Mi znsl6346)  

The wave field of a point source that acts on the impermeable stress free boundary of a Biot half-plane

G. L. Zavorokhin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Initial boundary value problem of wave propagation in half-plane filled with fluid-saturated porous solid is considered. Biot's medium is isotropic homogeneous and pores are closed on the boundary. Using complex analysis techniques, explicit formulae for displacements in elastic and fluid phases are obtained.
Key words and phrases: Lamb's problem, porous media, Biot's theory, impermeable boundary, head wave, Rayleigh wave.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00535 А
15-31-20600
Received: 14.11.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 226, Issue 6, Pages 727–733
DOI: https://doi.org/10.1007/s10958-017-3562-6
Bibliographic databases:
Document Type: Article
UDC: 550.34
Language: Russian
Citation: G. L. Zavorokhin, “The wave field of a point source that acts on the impermeable stress free boundary of a Biot half-plane”, Mathematical problems in the theory of wave propagation. Part 46, Zap. Nauchn. Sem. POMI, 451, POMI, St. Petersburg, 2016, 54–64; J. Math. Sci. (N. Y.), 226:6 (2017), 727–733
Citation in format AMSBIB
\Bibitem{Zav16}
\by G.~L.~Zavorokhin
\paper The wave field of a~point source that acts on the impermeable stress free boundary of a~Biot half-plane
\inbook Mathematical problems in the theory of wave propagation. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 451
\pages 54--64
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589167}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 226
\issue 6
\pages 727--733
\crossref{https://doi.org/10.1007/s10958-017-3562-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031497246}
Linking options:
  • https://www.mathnet.ru/eng/znsl6346
  • https://www.mathnet.ru/eng/znsl/v451/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :62
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024