Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 451, Pages 29–42 (Mi znsl6344)  

Convolution equations on expanding interval with symbols having zeros or poles of nonintegral power

A. M. Budylin, S. V. Sokolov

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: The class of convolution equations on a large expanding interval is considered. The equations are characterized by the fact that the symbol of the corresponding operator has zeros or poles of the non-integer power in the dual variable, which leads to long-range influence. The power-order complete asymptotic expantions for kernel of the inverse operator while length of the interval tends to infinity is found.
Key words and phrases: semiclassical asymptotics, singular integral equations, Wiener–Hopf method, Schwartz alternating method.
Funding agency Grant number
Saint Petersburg State University 11.38.263.2014
Received: 24.10.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 226, Issue 6, Pages 711–719
DOI: https://doi.org/10.1007/s10958-017-3560-8
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. M. Budylin, S. V. Sokolov, “Convolution equations on expanding interval with symbols having zeros or poles of nonintegral power”, Mathematical problems in the theory of wave propagation. Part 46, Zap. Nauchn. Sem. POMI, 451, POMI, St. Petersburg, 2016, 29–42; J. Math. Sci. (N. Y.), 226:6 (2017), 711–719
Citation in format AMSBIB
\Bibitem{BudSok16}
\by A.~M.~Budylin, S.~V.~Sokolov
\paper Convolution equations on expanding interval with symbols having zeros or poles of nonintegral power
\inbook Mathematical problems in the theory of wave propagation. Part~46
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 451
\pages 29--42
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589165}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 226
\issue 6
\pages 711--719
\crossref{https://doi.org/10.1007/s10958-017-3560-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031507104}
Linking options:
  • https://www.mathnet.ru/eng/znsl6344
  • https://www.mathnet.ru/eng/znsl/v451/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :27
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024