Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 450, Pages 151–174 (Mi znsl6340)  

An upper bound on the number of edges of a graph which $k$-th power has connected complement

V. S. Samoilov

St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
References:
Abstract: We call a graph $k$-wide, if for any division of its vertex set into two sets one can choose vertices of distance at least $k$ in these sets (i.e., the complement of $k$-th power of this graph is connected). We call a graph $k$-mono-wide, if for any division of its vertex set into two sets one can choose vertices of distance exactly $k$ in these sets.
We prove that the complement of a $3$-wide graph on $n$ vertices has at least $3n-7$ edges and the complement of a $3$-mono-wide graph on $n$ vertices has at least $3n-8$ edges. We construct infinite series of graphs for which these bounds are attained.
We also prove an asymptotically tight bound for the case $k\ge4$: the complement of a $k$-wide graph contains at least $(n-2k)(2k-4[\log_2k]-1)$ edges.
Key words and phrases: extremal graph theorey, a power of a graph, distance in a graph.
Received: 14.10.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 1, Pages 84–97
DOI: https://doi.org/10.1007/s10958-018-3860-7
Bibliographic databases:
Document Type: Article
UDC: 519.176
Language: Russian
Citation: V. S. Samoilov, “An upper bound on the number of edges of a graph which $k$-th power has connected complement”, Combinatorics and graph theory. Part VIII, Zap. Nauchn. Sem. POMI, 450, POMI, St. Petersburg, 2016, 151–174; J. Math. Sci. (N. Y.), 232:1 (2018), 84–97
Citation in format AMSBIB
\Bibitem{Sam16}
\by V.~S.~Samoilov
\paper An upper bound on the number of edges of a~graph which $k$-th power has connected complement
\inbook Combinatorics and graph theory. Part~VIII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 450
\pages 151--174
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6340}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3582956}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 1
\pages 84--97
\crossref{https://doi.org/10.1007/s10958-018-3860-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047355541}
Linking options:
  • https://www.mathnet.ru/eng/znsl6340
  • https://www.mathnet.ru/eng/znsl/v450/p151
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:151
    Full-text PDF :27
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024