Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 450, Pages 37–42 (Mi znsl6335)  

This article is cited in 2 scientific papers (total in 2 papers)

Bounds on the dynamic chromatic number of a graph in terms of the chromatic number

N. Y. Vlasovaa, D. V. Karpovba

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (147 kB) Citations (2)
References:
Abstract: A vertex coloring of a graph is called dynamic, if the neighborhood of any vertex of degree at least 2 contains at least two vertices of distinct colors. Similarly to the chromatic number $\chi(G)$ of the graph $G$ one can define its dynamic number $\chi_d(G)$ (the minimal number of colors in a dynamic coloring) and dynamic chromatic number $\chi_2(G)$ (the minimal number of colors in a proper dynamic coloring). We prove that $\chi_2(G)\le\chi(G)\cdot\chi_d(G)$ and construct an infinite series of graphs for which this bound on $\chi_2(G)$ is tight.
For a graph $G$ set $k=\lceil\frac{2\Delta(G)}{\delta(G)}\rceil$. We prove that $\chi_2(G)\le (k+1)c$. Moreover, in the case where $k\ge3$ and $\Delta(G)\ge3$ we prove a stronger bound $\chi_2(G)\le kc$.
Key words and phrases: chromatic number, proper coloring, dynamic coloring.
Received: 11.10.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 1, Pages 21–24
DOI: https://doi.org/10.1007/s10958-018-3855-4
Bibliographic databases:
Document Type: Article
UDC: 519.174.7
Language: Russian
Citation: N. Y. Vlasova, D. V. Karpov, “Bounds on the dynamic chromatic number of a graph in terms of the chromatic number”, Combinatorics and graph theory. Part VIII, Zap. Nauchn. Sem. POMI, 450, POMI, St. Petersburg, 2016, 37–42; J. Math. Sci. (N. Y.), 232:1 (2018), 21–24
Citation in format AMSBIB
\Bibitem{VlaKar16}
\by N.~Y.~Vlasova, D.~V.~Karpov
\paper Bounds on the dynamic chromatic number of a~graph in terms of the chromatic number
\inbook Combinatorics and graph theory. Part~VIII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 450
\pages 37--42
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3582951}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 1
\pages 21--24
\crossref{https://doi.org/10.1007/s10958-018-3855-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047329123}
Linking options:
  • https://www.mathnet.ru/eng/znsl6335
  • https://www.mathnet.ru/eng/znsl/v450/p37
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :39
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024