Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 450, Pages 5–13 (Mi znsl6333)  

On the connection between the chromatic number of a graph and the number of cycles, covering a vertex or an edge

S. L. Berlov, K. I. Tyschuk

Physical and Mathematical Lyceum 239, St. Petersburg, Russia
References:
Abstract: We prove several tight bounds on the chromatic number of a graph in terms of the minimal number of simple cycles, covering a vertex or an edge of this graph. Namely, we prove that $\chi(G)\leq k$ in the following two cases: any edge of $G$ is covered by less than $[e(k-1)!-1]$ simple cycles or any vertex of $G$ is covered by less than $[\frac{ek!}2-\frac{k+1}2]$ simple cycles. Tight bounds on the number of simple cycles covering an edge or a vertex of a $k$-critical graph are also proved.
Key words and phrases: proper coloring, chromatic number.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00563
Received: 11.10.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 232, Issue 1, Pages 1–5
DOI: https://doi.org/10.1007/s10958-018-3853-6
Bibliographic databases:
Document Type: Article
UDC: 519.174.7
Language: Russian
Citation: S. L. Berlov, K. I. Tyschuk, “On the connection between the chromatic number of a graph and the number of cycles, covering a vertex or an edge”, Combinatorics and graph theory. Part VIII, Zap. Nauchn. Sem. POMI, 450, POMI, St. Petersburg, 2016, 5–13; J. Math. Sci. (N. Y.), 232:1 (2018), 1–5
Citation in format AMSBIB
\Bibitem{BerTys16}
\by S.~L.~Berlov, K.~I.~Tyschuk
\paper On the connection between the chromatic number of a~graph and the number of cycles, covering a~vertex or an edge
\inbook Combinatorics and graph theory. Part~VIII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 450
\pages 5--13
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6333}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3582949}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 232
\issue 1
\pages 1--5
\crossref{https://doi.org/10.1007/s10958-018-3853-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047428749}
Linking options:
  • https://www.mathnet.ru/eng/znsl6333
  • https://www.mathnet.ru/eng/znsl/v450/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :75
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024