|
Zapiski Nauchnykh Seminarov POMI, 2016, Volume 449, Pages 261–274
(Mi znsl6331)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Lattice points in many-dimensional balls
O. M. Fomenko St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $P_k(n)$ be the difference of the number of points of the integer lattice contained in the ball $y_1^2+\dots+y_k^2\leq n$ and the volume of this ball. We investigate the asymptotic behavior of the sums $\sum_{n\leq x}P_k(n)$, $(k\geq4)$, $\sum_{n\leq x}P_3^2(n)$, and $\sum_{n\leq x}P_4^2(n)$ as $x\to+\infty$.
Key words and phrases:
many-dimensional balls, integral mean values, discrete mean values.
Received: 17.10.2016
Citation:
O. M. Fomenko, “Lattice points in many-dimensional balls”, Analytical theory of numbers and theory of functions. Part 32, Zap. Nauchn. Sem. POMI, 449, POMI, St. Petersburg, 2016, 261–274; J. Math. Sci. (N. Y.), 225:6 (2017), 1012–1021
Linking options:
https://www.mathnet.ru/eng/znsl6331 https://www.mathnet.ru/eng/znsl/v449/p261
|
Statistics & downloads: |
Abstract page: | 195 | Full-text PDF : | 57 | References: | 39 |
|