Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 449, Pages 60–68 (Mi znsl6322)  

This article is cited in 1 scientific paper (total in 1 paper)

Critical values and moduli of derivative of a complex polynomial at its zeros

V. N. Dubininab

a Far Eastern Federal University, Vladivostok, Russia
b Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
Full-text PDF (187 kB) Citations (1)
References:
Abstract: Under some restrictions on critical values of an algebraic polynomial with complex coefficients, a sharp inequality for the product of certain powers of moduli of its derivatives at its zeros is established. The equality is attained for the suitable Chebyshev polynomial of the first kind.
Key words and phrases: polynomial, Chebyshov polynomial, critial values, symmetrization.
Funding agency Grant number
Russian Science Foundation 14-11-00022
Received: 10.07.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 225, Issue 6, Pages 877–882
DOI: https://doi.org/10.1007/s10958-017-3503-4
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. N. Dubinin, “Critical values and moduli of derivative of a complex polynomial at its zeros”, Analytical theory of numbers and theory of functions. Part 32, Zap. Nauchn. Sem. POMI, 449, POMI, St. Petersburg, 2016, 60–68; J. Math. Sci. (N. Y.), 225:6 (2017), 877–882
Citation in format AMSBIB
\Bibitem{Dub16}
\by V.~N.~Dubinin
\paper Critical values and moduli of derivative of a~complex polynomial at its zeros
\inbook Analytical theory of numbers and theory of functions. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 449
\pages 60--68
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3580131}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 225
\issue 6
\pages 877--882
\crossref{https://doi.org/10.1007/s10958-017-3503-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85027297825}
Linking options:
  • https://www.mathnet.ru/eng/znsl6322
  • https://www.mathnet.ru/eng/znsl/v449/p60
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :65
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024