Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 449, Pages 5–14 (Mi znsl6319)  

Interaction of Hecke–Shimura rings and zeta functions

A. Andrianov

St. Petersburg Department of Steklov Mathematical Institutef RAS, St. Petersburg, Russia
References:
Abstract: An automorphic structure on a Lie group consists of Hecke–Shimura ring of an arithmetical discrete subgroup and a linear representation of the ring on an invariant space of automorphic forms given by Hecke operators. The paper is devoted to interactions (transfer homomorphisms) of Hecke–Shimura rings of integral symplectic groups and integral orthogonal groups of integral positive definite quadratic forms.
Key words and phrases: Hecke operators, Hecke–Shimura rings, interaction mappings, interaction sums, theta functions of integral quadratic forms.
Received: 10.10.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 225, Issue 6, Pages 841–847
DOI: https://doi.org/10.1007/s10958-017-3500-7
Bibliographic databases:
Document Type: Article
UDC: 511
Language: English
Citation: A. Andrianov, “Interaction of Hecke–Shimura rings and zeta functions”, Analytical theory of numbers and theory of functions. Part 32, Zap. Nauchn. Sem. POMI, 449, POMI, St. Petersburg, 2016, 5–14; J. Math. Sci. (N. Y.), 225:6 (2017), 841–847
Citation in format AMSBIB
\Bibitem{And16}
\by A.~Andrianov
\paper Interaction of Hecke--Shimura rings and zeta functions
\inbook Analytical theory of numbers and theory of functions. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 449
\pages 5--14
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3580128}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 225
\issue 6
\pages 841--847
\crossref{https://doi.org/10.1007/s10958-017-3500-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85027338415}
Linking options:
  • https://www.mathnet.ru/eng/znsl6319
  • https://www.mathnet.ru/eng/znsl/v449/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :42
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024