Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 448, Pages 252–262 (Mi znsl6315)  

Asymptotics of the Jordan normal form of a random nilpotent matrix

F. V. Petrova, V. V. Sokolovb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We study the Jordan normal form of an upper triangular matrix constructed from a random acyclic graph or a random poset. Some limit theorems and concentration results for the number and sizes of Jordan blocks are obtained. In particular, we study a linear algebraic analog of Ulam's longest increasing subsequence problem.
Key words and phrases: Jordan normal form, random poset, longest increasing subsequence, limit shape.
Funding agency Grant number
Saint Petersburg State University 6.38.223.2014
6.37.208.2016
Russian Foundation for Basic Research 14-01-00373a
Received: 19.09.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 2, Pages 339–344
DOI: https://doi.org/10.1007/s10958-017-3419-z
Bibliographic databases:
Document Type: Article
UDC: 519.172.3+519.179.4+519.212.2+512.643
Language: Russian
Citation: F. V. Petrov, V. V. Sokolov, “Asymptotics of the Jordan normal form of a random nilpotent matrix”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Sem. POMI, 448, POMI, St. Petersburg, 2016, 252–262; J. Math. Sci. (N. Y.), 224:2 (2017), 339–344
Citation in format AMSBIB
\Bibitem{PetSok16}
\by F.~V.~Petrov, V.~V.~Sokolov
\paper Asymptotics of the Jordan normal form of a~random nilpotent matrix
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 448
\pages 252--262
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6315}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3576262}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 2
\pages 339--344
\crossref{https://doi.org/10.1007/s10958-017-3419-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019661303}
Linking options:
  • https://www.mathnet.ru/eng/znsl6315
  • https://www.mathnet.ru/eng/znsl/v448/p252
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :62
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024