Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 448, Pages 246–251 (Mi znsl6314)  

This article is cited in 1 scientific paper (total in 1 paper)

Diagonal complexes for punctured polygons

G. Panina

St. Petersburg State University, Universitetsky pr., 28, Stary Peterhof, 198504, St. Petersburg, Russia
Full-text PDF (131 kB) Citations (1)
References:
Abstract: It is known that taken together, all collections of non-intersecting diagonals in a convex planar $n$-gon give rise to a (combinatorial type of a) convex $(n-3)$-dimensional polytope $\mathrm{As}_n$ called the Stasheff polytope, or associahedron. In the paper, we act in a similar way by taking a convex planar $n$-gon with $k$ labeled punctures. All collections of mutually nonintersecting and mutually non-homotopic topological diagonals yield a complex $\mathrm{As}_{n,k}$. We prove that it is a topological ball. We also show a natural cellular fibration $\mathrm{As}_{n,k}\to\mathrm{As}_{n,k-1}$. A special example is delivered by the case $k=1$. Here the vertices of the complex are labeled by all possible permutations together with all possible bracketings on $n$ distinct entries. This hints to a relationship with M. Kapranov's permutoassociahedron.
Key words and phrases: permutohedron, associahedron, cell complex.
Funding agency Grant number
Russian Science Foundation 16-11-10039
The paper is supported by the Russian Science Foundation under grant 16-11-10039.
Received: 17.10.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 2, Pages 335–338
DOI: https://doi.org/10.1007/s10958-017-3418-0
Bibliographic databases:
Document Type: Article
UDC: 514.1+515.164
Language: English
Citation: G. Panina, “Diagonal complexes for punctured polygons”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Sem. POMI, 448, POMI, St. Petersburg, 2016, 246–251; J. Math. Sci. (N. Y.), 224:2 (2017), 335–338
Citation in format AMSBIB
\Bibitem{Pan16}
\by G.~Panina
\paper Diagonal complexes for punctured polygons
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 448
\pages 246--251
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3576261}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 2
\pages 335--338
\crossref{https://doi.org/10.1007/s10958-017-3418-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019741080}
Linking options:
  • https://www.mathnet.ru/eng/znsl6314
  • https://www.mathnet.ru/eng/znsl/v448/p246
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :39
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024