Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 448, Pages 151–164 (Mi znsl6309)  

The Mallows measures on the hyperoctahedral group

S. Korotkikh

National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: The Mallows measures on the symmetric group $S_n$ form a deformation of the uniform distribution. These measures are commonly used in mathematical statistics, and in recent years they found applications in other areas of mathematics as well.
As shown by Gnedin and Olshanski, there exists an analog of the Mallows measure on the infinite symmetric group. These new measures are diffuse, and they are quasi-invariant with respect to the two-sided action of a countable dense subgroup.
The purpose of the present note is to extend the Gnedin–Olshanski construction to the infinite hyperoctahedral group. Along the way, we obtain some results for the Mallows measures on finite hyperoctahedral groups, which may be of independent interest.
Key words and phrases: infinite hyperoctahedral group, Young diagrams, quasi-invariant measures on groups.
Received: 28.09.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 2, Pages 269–277
DOI: https://doi.org/10.1007/s10958-017-3413-5
Bibliographic databases:
Document Type: Article
UDC: 519.114
Language: English
Citation: S. Korotkikh, “The Mallows measures on the hyperoctahedral group”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Sem. POMI, 448, POMI, St. Petersburg, 2016, 151–164; J. Math. Sci. (N. Y.), 224:2 (2017), 269–277
Citation in format AMSBIB
\Bibitem{Kor16}
\by S.~Korotkikh
\paper The Mallows measures on the hyperoctahedral group
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 448
\pages 151--164
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3576256}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 2
\pages 269--277
\crossref{https://doi.org/10.1007/s10958-017-3413-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019708237}
Linking options:
  • https://www.mathnet.ru/eng/znsl6309
  • https://www.mathnet.ru/eng/znsl/v448/p151
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:112
    Full-text PDF :35
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024