Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 448, Pages 124–134 (Mi znsl6307)  

This article is cited in 8 scientific papers (total in 8 papers)

On the generating function of discrete Chebyshev polynomials

N. Gogin, M. Hirvensalo

Department of Mathematics and Statistics, University of Turku, FI-20014 Turku, Finland
Full-text PDF (172 kB) Citations (8)
References:
Abstract: We give a closed form for the generating function of the discrete Chebyshev polynomials. The closed form consists of the MacWilliams transform of Jacobi polynomials together with a binomial multiplicative factor. It turns out that the desired closed form is a solution to a special case of the Heun differential equation, and that the closed form implies combinatorial identities that appear quite challenging to prove directly.
Key words and phrases: orthogonal polynomials, discrete Chebyshev polynomials, Krawtchouk polynomials, MacWilliams transform, generating function, Heun equation.
Funding agency Grant number
Väisälä foundation
Supported by the Väisälä foundation.
Received: 04.10.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 2, Pages 250–257
DOI: https://doi.org/10.1007/s10958-017-3410-8
Bibliographic databases:
Document Type: Article
UDC: 517.58.587
Language: English
Citation: N. Gogin, M. Hirvensalo, “On the generating function of discrete Chebyshev polynomials”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Sem. POMI, 448, POMI, St. Petersburg, 2016, 124–134; J. Math. Sci. (N. Y.), 224:2 (2017), 250–257
Citation in format AMSBIB
\Bibitem{GogHir16}
\by N.~Gogin, M.~Hirvensalo
\paper On the generating function of discrete Chebyshev polynomials
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 448
\pages 124--134
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3576253}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 2
\pages 250--257
\crossref{https://doi.org/10.1007/s10958-017-3410-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019705973}
Linking options:
  • https://www.mathnet.ru/eng/znsl6307
  • https://www.mathnet.ru/eng/znsl/v448/p124
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :80
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024