Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 448, Pages 14–47 (Mi znsl6301)  

This article is cited in 5 scientific papers (total in 6 papers)

On the distribution of points with algebraically conjugate coordinates in a neighborhood of smooth curves

V. Bernika, F. Götzeb, A. Gusakovaa

a Institute of Mathematics of the National Academy of Sciences of Belarus, Surganov str. 11, Minsk 220072, Belarus
b Department of Mathematics, University of Bielefeld, Postfach 100131, 33501, Bielefeld, Germany
Full-text PDF (349 kB) Citations (6)
References:
Abstract: Let $\varphi\colon\mathbb R\to\mathbb R$ be a continuously differentiable function on a finite interval $J\subset\mathbb R$, and let $\boldsymbol\alpha=(\alpha_1,\alpha_2)$ be a point with algebraically conjugate coordinates such that the minimal polynomial $P$ of $\alpha_1,\alpha_2$ is of degree $\leq n$ and height $\leq Q$. Denote by $M^n_\varphi(Q,\gamma,J)$ the set of points $\boldsymbol\alpha$ such that $|\varphi(\alpha_1)-\alpha_2|\leq c_1Q^{-\gamma}$. We show that for $0<\gamma<1$ and any sufficiently large $Q$ there exist positive values $c_2<c_3$, where $c_i=c_i(n)$, $i=1,2$, that are independent of $Q$ and such that $c_2\cdot Q^{n+1-\gamma}<\# M^n_\varphi(Q,\gamma,J)<c_3\cdot Q^{n+1-\gamma}$.
Key words and phrases: algebraic numbers, metric theory of Diophantine approximation, Lebesgue measure.
Funding agency Grant number
Universität Bielefeld SFB-701
Supported by SFB-701, Bielefeld University (Germany).
Received: 25.10.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 224, Issue 2, Pages 176–198
DOI: https://doi.org/10.1007/s10958-017-3404-6
Bibliographic databases:
Document Type: Article
UDC: 511.42
Language: English
Citation: V. Bernik, F. Götze, A. Gusakova, “On the distribution of points with algebraically conjugate coordinates in a neighborhood of smooth curves”, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Zap. Nauchn. Sem. POMI, 448, POMI, St. Petersburg, 2016, 14–47; J. Math. Sci. (N. Y.), 224:2 (2017), 176–198
Citation in format AMSBIB
\Bibitem{BerGotGus16}
\by V.~Bernik, F.~G\"otze, A.~Gusakova
\paper On the distribution of points with algebraically conjugate coordinates in a~neighborhood of smooth curves
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXVII
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 448
\pages 14--47
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3576247}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 224
\issue 2
\pages 176--198
\crossref{https://doi.org/10.1007/s10958-017-3404-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019764176}
Linking options:
  • https://www.mathnet.ru/eng/znsl6301
  • https://www.mathnet.ru/eng/znsl/v448/p14
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :74
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024