Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 447, Pages 113–122 (Mi znsl6297)  

This article is cited in 5 scientific papers (total in 5 papers)

$\mathrm A_1$-regularity and boundedness of Riesz transforms in Banach lattices of measurable functions

D. V. Rutsky

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (214 kB) Citations (5)
References:
Abstract: Suppose that $X$ is a Banach lattice of measurable functions on $\mathbb R^n\times\Omega$ having the Fatou property. We show that the boundedness of all Riesz transforms $R_j$ in $X$ is equivalent to the boundedness of the Hardy–Littlewood maximal operator $M$ in both $X$ and $X'$, and thus to the boundedness of all Calderón–Zygmund operators in $X$. We also prove a result for the case of operators between lattices: if $Y\supset X$ is a Banach lattice with the Fatou property such that the maximal operator is bounded in $Y'$, then the boundedness of all Riesz transforms from $X$ to $Y$ is equivalent to the boundedness of the maximal operator from $X$ to $Y$, and thus to the boundedness of all Calderón–Zygmund operators from $X$ to $Y$.
Key words and phrases: $\mathrm A_1$-regularity, Muckenhoupt weights, reverse Hölder inequality, Hardy–Littlewood maximal operator, Riesz transforms, Calderón–Zygmund operators.
Received: 06.06.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 229, Issue 5, Pages 561–567
DOI: https://doi.org/10.1007/s10958-018-3698-z
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Rutsky, “$\mathrm A_1$-regularity and boundedness of Riesz transforms in Banach lattices of measurable functions”, Investigations on linear operators and function theory. Part 44, Zap. Nauchn. Sem. POMI, 447, POMI, St. Petersburg, 2016, 113–122; J. Math. Sci. (N. Y.), 229:5 (2018), 561–567
Citation in format AMSBIB
\Bibitem{Rut16}
\by D.~V.~Rutsky
\paper $\mathrm A_1$-regularity and boundedness of Riesz transforms in Banach lattices of measurable functions
\inbook Investigations on linear operators and function theory. Part~44
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 447
\pages 113--122
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3580165}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 229
\issue 5
\pages 561--567
\crossref{https://doi.org/10.1007/s10958-018-3698-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041545253}
Linking options:
  • https://www.mathnet.ru/eng/znsl6297
  • https://www.mathnet.ru/eng/znsl/v447/p113
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :59
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024