|
Zapiski Nauchnykh Seminarov POMI, 2016, Volume 447, Pages 33–50
(Mi znsl6292)
|
|
|
|
Notes on the codimension one conjecture in the operator corona theorem
M. F. Gamal' St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Answering a question of S. R. Treil (2004), for every $\delta$, $0<\delta<1$, we constract examples of contractions whose characteristic function $F\in H^\infty(\mathcal E\to\mathcal E_\ast)$ satisfies the conditions $\|F(z)x\|\geq\delta\|x\|$ and $\dim\mathcal E_\ast\ominus F(z)\mathcal E=1$ for every $z\in\mathbb D$, $x\in\mathcal E$, but is not left invertible. Also, we show that the condition $\sup_{z\in\mathbb D}\|I-F(z)^\ast F(z)\|_{\mathfrak S_1}<\infty$, where $\mathfrak S_1$ is the trace class of operators, which is sufficient for the left invertibility of the operator-valued function $F$ satisfying the estimate $\|F(z)x\|\geq\delta\|x\|$ for every $z\in\mathbb D$, $x\in\mathcal E$, with some $\delta>0$ (S. R. Treil, 2004), is necessary for the left invertibility of an inner function $F$ such that $\dim\mathcal E_\ast\ominus F(z)\mathcal E<\infty$ for some $z\in\mathbb D$.
Key words and phrases:
operator corona theorem, contraction, similarity to an isometry.
Received: 23.06.2016
Citation:
M. F. Gamal', “Notes on the codimension one conjecture in the operator corona theorem”, Investigations on linear operators and function theory. Part 44, Zap. Nauchn. Sem. POMI, 447, POMI, St. Petersburg, 2016, 33–50; J. Math. Sci. (N. Y.), 229:5 (2018), 506–517
Linking options:
https://www.mathnet.ru/eng/znsl6292 https://www.mathnet.ru/eng/znsl/v447/p33
|
Statistics & downloads: |
Abstract page: | 129 | Full-text PDF : | 43 | References: | 35 |
|