Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 447, Pages 33–50 (Mi znsl6292)  

Notes on the codimension one conjecture in the operator corona theorem

M. F. Gamal'

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Answering a question of S. R. Treil (2004), for every $\delta$, $0<\delta<1$, we constract examples of contractions whose characteristic function $F\in H^\infty(\mathcal E\to\mathcal E_\ast)$ satisfies the conditions $\|F(z)x\|\geq\delta\|x\|$ and $\dim\mathcal E_\ast\ominus F(z)\mathcal E=1$ for every $z\in\mathbb D$, $x\in\mathcal E$, but is not left invertible. Also, we show that the condition $\sup_{z\in\mathbb D}\|I-F(z)^\ast F(z)\|_{\mathfrak S_1}<\infty$, where $\mathfrak S_1$ is the trace class of operators, which is sufficient for the left invertibility of the operator-valued function $F$ satisfying the estimate $\|F(z)x\|\geq\delta\|x\|$ for every $z\in\mathbb D$, $x\in\mathcal E$, with some $\delta>0$ (S. R. Treil, 2004), is necessary for the left invertibility of an inner function $F$ such that $\dim\mathcal E_\ast\ominus F(z)\mathcal E<\infty$ for some $z\in\mathbb D$.
Key words and phrases: operator corona theorem, contraction, similarity to an isometry.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00748-a
Received: 23.06.2016
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 229, Issue 5, Pages 506–517
DOI: https://doi.org/10.1007/s10958-018-3693-4
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. F. Gamal', “Notes on the codimension one conjecture in the operator corona theorem”, Investigations on linear operators and function theory. Part 44, Zap. Nauchn. Sem. POMI, 447, POMI, St. Petersburg, 2016, 33–50; J. Math. Sci. (N. Y.), 229:5 (2018), 506–517
Citation in format AMSBIB
\Bibitem{Gam16}
\by M.~F.~Gamal'
\paper Notes on the codimension one conjecture in the operator corona theorem
\inbook Investigations on linear operators and function theory. Part~44
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 447
\pages 33--50
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3580160}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 229
\issue 5
\pages 506--517
\crossref{https://doi.org/10.1007/s10958-018-3693-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041716807}
Linking options:
  • https://www.mathnet.ru/eng/znsl6292
  • https://www.mathnet.ru/eng/znsl/v447/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :43
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024