Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 446, Pages 40–69 (Mi znsl6283)  

This article is cited in 10 scientific papers (total in 10 papers)

Monotone orbifold Hurwitz numbers

N. Doa, M. Karevb

a School of Mathematical Sciences, Monash University, VIC 3800, Australia
b St. Petersburg Department of the Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
References:
Abstract: In general, Hurwitz numbers count branched covers of the Riemann sphere with prescribed ramification data, or equivalently, factorisations in the symmetric group with prescribed cycle structure data. In this paper, we initiate the study of monotone orbifold Hurwitz numbers. These are simultaneously variations of the orbifold case and generalisations of the monotone case, both of which have been previously studied in the literature. We derive a cut-and-join recursion for monotone orbifold Hurwitz numbers, determine a quantum curve governing their wave function, and state an explicit conjecture relating them to topological recursion.
Key words and phrases: Hurwitz numbers, monotone Hurwitz numbers, monodromy groups, topological recursion, quantum curve.
Funding agency Grant number
Australian Research Council DE130100650
Russian Foundation for Basic Research 13-01-00383a
The first author was partly supported by the Australian Research Council grant DE130100650. The second author was partly supported by the Russian Foundation for Basic Research grant 13-01-00383a.
Received: 06.11.2015
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 226, Issue 5, Pages 568–587
DOI: https://doi.org/10.1007/s10958-017-3551-9
Bibliographic databases:
Document Type: Article
UDC: 515.179.25+517.545
Language: English
Citation: N. Do, M. Karev, “Monotone orbifold Hurwitz numbers”, Combinatorics and graph theory. Part V, Zap. Nauchn. Sem. POMI, 446, POMI, St. Petersburg, 2016, 40–69; J. Math. Sci. (N. Y.), 226:5 (2017), 568–587
Citation in format AMSBIB
\Bibitem{DoKar16}
\by N.~Do, M.~Karev
\paper Monotone orbifold Hurwitz numbers
\inbook Combinatorics and graph theory. Part~V
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 446
\pages 40--69
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6283}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3520422}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 226
\issue 5
\pages 568--587
\crossref{https://doi.org/10.1007/s10958-017-3551-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029740801}
Linking options:
  • https://www.mathnet.ru/eng/znsl6283
  • https://www.mathnet.ru/eng/znsl/v446/p40
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :54
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024