Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 445, Pages 5–32 (Mi znsl6274)  

Growth of norms in $L_2$ of derivatives of Steklov functions and properties of functions defined by best approximations and Fourier coefficients

M. V. Babushkin, V. V. Zhuk

Saint Petersburg State University, Saint Petersburg, Russia
References:
Abstract: In the paper, for periodic functions, a connection between integrals of norms in $L_2$ of derivatives of Steklov functions and series constructed from Fourier coefficients and the best approximations in $L_2$ is established, and the question on their simultaneous convergence or divergence is considered. Similar investigations are carried out for even and odd periodic functions.
Key words and phrases: Steklov functions, Fourier coefficients, nonnegative Fourier coefficients, best approximation, equiconvergence of series and integrals.
Received: 31.03.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 222, Issue 5, Pages 525–543
DOI: https://doi.org/10.1007/s10958-017-3320-9
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. V. Babushkin, V. V. Zhuk, “Growth of norms in $L_2$ of derivatives of Steklov functions and properties of functions defined by best approximations and Fourier coefficients”, Analytical theory of numbers and theory of functions. Part 31, Zap. Nauchn. Sem. POMI, 445, POMI, St. Petersburg, 2016, 5–32; J. Math. Sci. (N. Y.), 222:5 (2017), 525–543
Citation in format AMSBIB
\Bibitem{BabZhu16}
\by M.~V.~Babushkin, V.~V.~Zhuk
\paper Growth of norms in $L_2$ of derivatives of Steklov functions and properties of functions defined by best approximations and Fourier coefficients
\inbook Analytical theory of numbers and theory of functions. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 445
\pages 5--32
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6274}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3511158}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 5
\pages 525--543
\crossref{https://doi.org/10.1007/s10958-017-3320-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015684243}
Linking options:
  • https://www.mathnet.ru/eng/znsl6274
  • https://www.mathnet.ru/eng/znsl/v445/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :65
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024